Silicon quantum dot spin qubits have great potential for application in large-scale quantum circuits as they share many similarities with conventional transistors that represent the prototypical example for scalable electronic platforms. However, for quantum dot formation and control, additional gates are required, which add to device complexity and, thus, hinder upscaling. Here, we meet this challenge by demonstrating the scalable integration of a multilayer gate stack in silicon quantum dot devices using self-alignment, which allows for ultra-small gate lengths and intrinsically perfect layer-to-layer alignment. We explore the prospects of these devices as hosts for hole spin qubits that benefit from electrically driven spin control via spin–orbit interaction. Therefore, we study hole transport through a double quantum dot and observe current rectification due to the Pauli spin blockade. The application of a small magnetic field leads to lifting of the spin blockade and reveals the presence of spin–orbit interaction. From the magnitude of a singlet-triplet anticrossing at a high magnetic field, we estimate a spin–orbit energy of 37μeV, which corresponds to a spin–orbit length of 48nm. This work paves the way for scalable spin-based quantum circuits with fast, all-electrical qubit control.

1.
S. J.
Angus
,
A. J.
Ferguson
,
A. S.
Dzurak
, and
R. G.
Clark
, “
Gate-defined quantum dots in intrinsic silicon
,”
Nano Lett.
7
,
2051
2055
(
2007
).
2.
W. H.
Lim
,
F. A.
Zwanenburg
,
H.
Huebl
,
M.
Möttönen
,
K. W.
Chan
,
A.
Morello
, and
A. S.
Dzurak
, “
Observation of the single-electron regime in a highly tunable silicon quantum dot
,”
Appl. Phys. Lett.
95
,
242102
(
2009
).
3.
D.
Loss
and
D. P.
DiVincenzo
, “
Quantum computation with quantum dots
,”
Phys. Rev. A
57
,
120
126
(
1998
).
4.
C.
Kloeffel
and
D.
Loss
, “
Prospects for spin-based quantum computing in quantum dots
,”
Annu. Rev. Condens. Matter Phys.
4
,
51
81
(
2013
).
5.
M.
Veldhorst
,
J. C. C.
Hwang
,
C. H.
Yang
,
A. W.
Leenstra
,
B.
de Ronde
,
J. P.
Dehollain
,
J. T.
Muhonen
,
F. E.
Hudson
,
K. M.
Itoh
,
A.
Morello
, and
A. S.
Dzurak
, “
An addressable quantum dot qubit with fault-tolerant control-fidelity
,”
Nat. Nanotechnol.
9
,
981
985
(
2014
).
6.
L.
Petit
,
H. G. J.
Eenink
,
M.
Russ
,
W. I. L.
Lawrie
,
N. W.
Hendrickx
,
S. G. J.
Philips
,
J. S.
Clarke
,
L. M. K.
Vandersypen
, and
M.
Veldhorst
, “
Universal quantum logic in hot silicon qubits
,”
Nature
580
,
355
359
(
2020
).
7.
C. H.
Yang
,
R. C. C.
Leon
,
J. C. C.
Hwang
,
A.
Saraiva
,
T.
Tanttu
,
W.
Huang
,
J. C.
Lemyre
,
K. W.
Chan
,
K. Y.
Tan
,
F. E.
Hudson
,
K. M.
Itoh
,
A.
Morello
,
M.
Pioro-Ladrière
,
A.
Laucht
, and
A. S.
Dzurak
, “
Operation of a silicon quantum processor unit cell above one kelvin
,”
Nature
580
,
350
354
(
2020
).
8.
D. M.
Zajac
,
A. J.
Sigillito
,
M.
Russ
,
F.
Borjans
,
J. M.
Taylor
,
G.
Burkard
, and
J. R.
Petta
, “
Resonantly driven CNOT gate for electron spins
,”
Science
359
,
439
442
(
2018
).
9.
T. F.
Watson
,
S. G. J.
Philips
,
E.
Kawakami
,
D. R.
Ward
,
P.
Scarlino
,
M.
Veldhorst
,
D. E.
Savage
,
M. G.
Lagally
,
M.
Friesen
,
S. N.
Coppersmith
,
M. A.
Eriksson
, and
L. M. K.
Vandersypen
, “
A programmable two-qubit quantum processor in silicon
,”
Nature
555
,
633
637
(
2018
).
10.
J.
Yoneda
,
K.
Takeda
,
T.
Otsuka
,
T.
Nakajima
,
M. R.
Delbecq
,
G.
Allison
,
T.
Honda
,
T.
Kodera
,
S.
Oda
,
Y.
Hoshi
,
N.
Usami
,
K. M.
Itoh
, and
S.
Tarucha
, “
A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%
,”
Nat. Nanotechnol.
13
,
102
106
(
2018
).
11.
R.
Maurand
,
X.
Jehl
,
D.
Kotekar-Patil
,
A.
Corna
,
H.
Bohuslavskyi
,
R.
Laviéville
,
L.
Hutin
,
S.
Barraud
,
M.
Vinet
,
M.
Sanquer
, and
S. D.
Franceschi
, “
A CMOS silicon spin qubit
,”
Nat. Commun.
7
,
13575
(
2016
).
12.
M.
Veldhorst
,
H. G. J.
Eenink
,
C. H.
Yang
, and
A. S.
Dzurak
, “
Silicon CMOS architecture for a spin-based quantum computer
,”
Nat. Commun.
8
,
1766
(
2017
).
13.
L. M. K.
Vandersypen
,
H.
Bluhm
,
J. S.
Clarke
,
A. S.
Dzurak
,
R.
Ishihara
,
A.
Morello
,
D. J.
Reilly
,
L. R.
Schreiber
, and
M.
Veldhorst
, “
Interfacing spin qubits in quantum dots and donors—Hot, dense, and coherent
,”
NPJ Quantum Inf.
3
,
34
(
2017
).
14.
L. M. K.
Vandersypen
and
M. A.
Eriksson
, “
Quantum computing with semiconductor spins
,”
Phys. Today
72
(
8
),
38
45
(
2019
).
15.
H. G. J.
Eenink
,
L.
Petit
,
W. I. L.
Lawrie
,
J. S.
Clarke
,
L. M. K.
Vandersypen
, and
M.
Veldhorst
, “
Tunable coupling and isolation of single electrons in silicon metal-oxide-semiconductor quantum dots
,”
Nano Lett.
19
,
8653
8657
(
2019
).
16.
W. I. L.
Lawrie
,
H. G. J.
Eenink
,
N. W.
Hendrickx
,
J. M.
Boter
,
L.
Petit
,
S. V.
Amitonov
,
M.
Lodari
,
B. P.
Wuetz
,
C.
Volk
,
S. G. J.
Philips
,
G.
Droulers
,
N.
Kalhor
,
F.
van Riggelen
,
D.
Brousse
,
A.
Sammak
,
L. M. K.
Vandersypen
,
G.
Scappucci
, and
M.
Veldhorst
, “
Quantum dot arrays in silicon and germanium
,”
Appl. Phys. Lett.
116
,
080501
(
2020
).
17.
L. L.
Vadasz
,
A. S.
Grove
,
T. A.
Rowe
, and
G. E.
Moore
, “
Silicon-gate technology
,”
IEEE Spectrum
6
,
28
35
(
1969
).
18.
R. W.
Bower
,
H. G.
Dill
,
K. G.
Aubuchon
, and
S. A.
Thompson
, “
Mos field effect transistors formed by gate masked ion implantation
,”
IEEE Trans. Electron Devices
15
,
757
761
(
1968
).
19.
H.
Watzinger
,
J.
Kukučka
,
L.
Vukušić
,
F.
Gao
,
T.
Wang
,
F.
Schäffler
,
J.-J.
Zhang
, and
G.
Katsaros
, “
A germanium hole spin qubit
,”
Nat. Commun.
9
,
3902
(
2018
).
20.
N. W.
Hendrickx
,
D. P.
Franke
,
A.
Sammak
,
G.
Scappucci
, and
M.
Veldhorst
, “
Fast two-qubit logic with holes in germanium
,”
Nature
577
,
487
491
(
2020
).
21.
B.
Voisin
,
R.
Maurand
,
S.
Barraud
,
M.
Vinet
,
X.
Jehl
,
M.
Sanquer
,
J.
Renard
, and
S. D.
Franceschi
, “
Electrical control of g-factor in a few-hole silicon nanowire MOSFET
,”
Nano Lett.
16
,
88
92
(
2016
).
22.
M.
Pioro-Ladrière
,
T.
Obata
,
Y.
Tokura
,
Y.-S.
Shin
,
T.
Kubo
,
K.
Yoshida
,
T.
Taniyama
, and
S.
Tarucha
, “
Electrically driven single-electron spin resonance in a slanting Zeeman field
,”
Nat. Phys.
4
,
776
779
(
2008
).
23.
C.
Kloeffel
,
M. J.
Rančić
, and
D.
Loss
, “
Direct Rashba spin-orbit interaction in si and ge nanowires with different growth directions
,”
Phys. Rev. B
97
,
235422
(
2018
).
24.
F. N. M.
Froning
,
L. C.
Camenzind
,
O. A. H.
van der Molen
,
A.
Li
,
E. P. A. M.
Bakkers
,
D. M.
Zumbühl
, and
F. R.
Braakman
, “
Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality
,”
Nat. Nanotechnol.
(published online,
2021
).
25.
A. V.
Kuhlmann
,
V.
Deshpande
,
L. C.
Camenzind
,
D. M.
Zumbühl
, and
A.
Fuhrer
, “
Ambipolar quantum dots in undoped silicon fin field-effect transistors
,”
Appl. Phys. Lett.
113
,
122107
(
2018
).
26.
W. G.
van der Wiel
,
S. D.
Franceschi
,
J. M.
Elzerman
,
T.
Fujisawa
,
S.
Tarucha
, and
L. P.
Kouwenhoven
, “
Electron transport through double quantum dots
,”
Rev. Mod. Phys.
75
,
1
22
(
2002
).
27.
S. D.
Franceschi
,
S.
Sasaki
,
J. M.
Elzerman
,
W. G.
van der Wiel
,
S.
Tarucha
, and
L. P.
Kouwenhoven
, “
Electron cotunneling in a semiconductor quantum dot
,”
Phys. Rev. Lett.
86
,
878
881
(
2001
).
28.
D. M.
Zumbühl
,
C. M.
Marcus
,
M. P.
Hanson
, and
A. C.
Gossard
, “
Cotunneling spectroscopy in few-electron quantum dots
,”
Phys. Rev. Lett.
93
,
256801
(
2004
).
29.
K.
Ono
, “
Current rectification by pauli exclusion in a weakly coupled double quantum dot system
,”
Science
297
,
1313
1317
(
2002
).
30.
A. C.
Johnson
,
J. R.
Petta
,
C. M.
Marcus
,
M. P.
Hanson
, and
A. C.
Gossard
, “
Singlet-triplet spin blockade and charge sensing in a few-electron double quantum dot
,”
Phys. Rev. B
72
,
165308
(
2005
).
31.
R.
Hanson
,
L. P.
Kouwenhoven
,
J. R.
Petta
,
S.
Tarucha
, and
L. M. K.
Vandersypen
, “
Spins in few-electron quantum dots
,”
Rev. Mod. Phys.
79
,
1217
1265
(
2007
).
32.
N. S.
Lai
,
W. H.
Lim
,
C. H.
Yang
,
F. A.
Zwanenburg
,
W. A.
Coish
,
F.
Qassemi
,
A.
Morello
, and
A. S.
Dzurak
, “
Pauli spin blockade in a highly tunable silicon double quantum dot
,”
Sci. Rep.
1
,
110
(
2011
).
33.
R.
Li
,
F. E.
Hudson
,
A. S.
Dzurak
, and
A. R.
Hamilton
, “
Pauli spin blockade of heavy holes in a silicon double quantum dot
,”
Nano Lett.
15
,
7314
7318
(
2015
).
34.
S.
Bosco
,
B.
Hetényi
, and
D.
Loss
, “
Hole spin qubits in si finfets with fully tunable spin-orbit coupling and sweet spots for charge noise
,” arXiv:2011.09417 (
2020
).
35.
M.
Field
,
C. G.
Smith
,
M.
Pepper
,
D. A.
Ritchie
,
J. E. F.
Frost
,
G. A. C.
Jones
, and
D. G.
Hasko
, “
Measurements of coulomb blockade with a noninvasive voltage probe
,”
Phys. Rev. Lett.
70
,
1311
1314
(
1993
).
36.
C.
Fasth
,
A.
Fuhrer
,
L.
Samuelson
,
V. N.
Golovach
, and
D.
Loss
, “
Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot
,”
Phys. Rev. Lett.
98
,
266801
(
2007
).
37.
A.
Pfund
,
I.
Shorubalko
,
K.
Ensslin
, and
R.
Leturcq
, “
Spin-state mixing in InAs double quantum dots
,”
Phys. Rev. B
76
,
161308
(
2007
).
38.
H. O. H.
Churchill
,
A. J.
Bestwick
,
J. W.
Harlow
,
F.
Kuemmeth
,
D.
Marcos
,
C. H.
Stwertka
,
S. K.
Watson
, and
C. M.
Marcus
, “
Electron–nuclear interaction in 13c nanotube double quantum dots
,”
Nat. Phys.
5
,
321
326
(
2009
).
39.
J.
Danon
and
Y. V.
Nazarov
, “
Pauli spin blockade in the presence of strong spin-orbit coupling
,”
Phys. Rev. B
80
,
041301
(
2009
).
40.
S.
Nadj-Perge
,
S. M.
Frolov
,
J. W. W.
van Tilburg
,
J.
Danon
,
Y. V.
Nazarov
,
R.
Algra
,
E. P. A. M.
Bakkers
, and
L. P.
Kouwenhoven
, “
Disentangling the effects of spin-orbit and hyperfine interactions on spin blockade
,”
Phys. Rev. B
81
,
201305
(
2010
).
41.
F.
Qassemi
,
W. A.
Coish
, and
F. K.
Wilhelm
, “
Stationary and transient leakage current in the Pauli spin blockade
,”
Phys. Rev. Lett.
102
,
176806
(
2009
).
42.
D.
Biesinger
,
C.
Scheller
,
B.
Braunecker
,
J.
Zimmerman
,
A.
Gossard
, and
D.
Zumbühl
, “
Intrinsic metastabilities in the charge configuration of a double quantum dot
,”
Phys. Rev. Lett.
115
,
106804
(
2015
).
43.
F.
Gao
,
J.-H.
Wang
,
H.
Watzinger
,
H.
Hu
,
M. J.
Rančić
,
J.-Y.
Zhang
,
T.
Wang
,
Y.
Yao
,
G.-L.
Wang
,
J.
Kukučka
,
L.
Vukušić
,
C.
Kloeffel
,
D.
Loss
,
F.
Liu
,
G.
Katsaros
, and
J.-J.
Zhang
, “
Site-controlled uniform Ge/Si hut wires with electrically tunable spin–orbit coupling
,”
Adv. Mater.
32
,
1906523
(
2020
).

Supplementary Material

You do not currently have access to this content.