The development of nonvolatile organic field-effect transistor (OFET) memories with a satisfactory solution processability is highly desirable to fabricate the data storage media for flexible and printed electronic devices. In this study, we fabricate top-gate/bottom-contact OFET memories having an organic floating-gate structure by a spin-coating process and investigate their memory characteristics. An ambipolar polymer semiconductor of poly(N-alkyldiketopyrrolo-pyrrole-dithienylthieno[3,2-b]thiophene) (DPP-DTT) was used to fabricate an organic semiconductor layer, on which an organic composite of polystyrene and 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) was deposited to form an organic floating-gate structure through vertical phase separation. The existence of a deep lowest unoccupied molecular orbital (LUMO) level and the excellent electron transport property of the DPP-DTT enables the injection of electrons from the Au source-drain electrodes to the DPP-DTT semiconductor layer and the storage of electrons in the LUMO level of the TIPS-pentacene floating gates by programming under dark conditions. A high work function metal oxide layer of MoO3 was inserted at the Al gate electrode/CYTOP gate insulator interface to tune the energy level difference between the Au source-drain and Al gate electrodes. The DPP-DTT FET memories with MoO3/Al gate electrodes exhibit satisfactory retention characteristics and, because of the ambipolar trapping characteristics, allow the storing of holes in the highest occupied molecular orbital level of the TIPS-pentacene floating gates in the erasing process. Furthermore, the molecular floating-gate OFET memories exhibit a high storage capacity for multi-level data, and four state levels can be recorded with stable retention characteristics.

1.
P.
Heremans
,
G. H.
Gelinck
,
R.
Müller
,
K.-J.
Baeg
,
D.-Y.
Kim
, and
Y.-Y.
Noh
, “
Polymer and organic nonvolatile memory devices
,”
Chem. Mater.
23
,
341
(
2011
).
2.
W. L.
Leong
,
N.
Mathews
,
B.
Tan
,
S.
Vaidyanathan
,
F.
Dötz
, and
S.
Mhaisalkar
, “
Towards printable organic thin film transistor based flash memory devices
,”
J. Mater. Chem.
21
,
5203
(
2011
).
3.
C.-C.
Shih
,
W.-Y.
Lee
, and
W.-C.
Chen
, “
Nanostructured materials for non-volatile organic transistor memory applications
,”
Mater. Horiz.
3
,
294
(
2016
).
4.
R. C. G.
Naber
,
C.
Tanase
,
P. W. M.
Blom
,
G. H.
Gelinck
,
A. W.
Marsman
,
F. J.
Touwlager
,
S.
Setayesh
, and
D. M.
de Leeuw
, “
High-performance solution-processed polymer ferroelectric field-effect transistors
,”
Nat. Mater.
4
,
243
(
2005
).
5.
K.-J.
Baeg
,
Y.-Y.
Noh
,
J.
Ghim
,
S.-J.
Kang
,
H.
Lee
, and
D.-Y.
Kim
, “
Organic non-volatile memory based on pentacene field-effect transistors using a polymeric gate electret
,”
Adv. Mater.
18
,
3179
(
2006
).
6.
Z.
Liu
,
F.
Xue
,
Y.
Su
,
Y. M.
Lvov
, and
K.
Varahramyan
, “
Memory effect of a polymer thin-film transistor with self-assembled gold nanoparticles in the gate dielectric
,”
IEEE Trans. Nanotechnol.
5
,
379
(
2006
).
7.
S.-J.
Kim
,
Y.-S.
Park
,
S.-H.
Lyu
, and
J.-S.
Lee
, “
Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers
,”
Appl. Phys. Lett.
96
,
033302
(
2010
).
8.
X.-J.
She
,
C.-H.
Liu
,
Q.-J.
Sun
,
X.
Gao
, and
S.-D.
Wang
, “
Morphology control of tunneling dielectric towards high-performance organic field-effect transistor nonvolatile memory
,”
Org. Electron.
13
,
1908
(
2012
).
9.
Y.
Zhou
,
S.-T.
Han
,
P.
Sonar
, and
V. A. L.
Roy
, “
Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism
,”
Sci. Rep.
3
,
2319
(
2013
).
10.
S.
Lee
,
J.
Lee
,
H.
Lee
,
Y. J.
Yuk
,
M.
Kim
,
H.
Moon
,
J.
Seo
,
Y.
Park
,
J. Y.
Park
,
S. H.
Ko
, and
S.
Yoo
, “
Overcoming the “retention vs. voltage” trade-off in nonvolatile organic memory: Ag nanoparticles covered with dipolar self-assembled monolayers as robust charge storage nodes
,”
Org. Electron.
14
,
3260
(
2013
).
11.
K.
Kajimoto
,
K.
Uno
, and
I.
Tanaka
, “
Memory effect of pentacene field-effect transistors with embedded monolayer of semiconductor colloidal nano-dots
,”
Physica E
42
,
2816
(
2010
).
12.
K.
Kajimoto
,
A.
Kurokawa
,
K.
Uno
, and
I.
Tanaka
, “
Large memory effect and high carrier mobility of organic field-effect transistors using semiconductor colloidal nano-dots dispersed in polymer buffer layers
,”
Jpn. J. Appl. Phys., Part 1
50
,
021601
(
2011
).
13.
Y.
Kimura
,
A.
Hamaguchi
,
Y.
Ikeda
,
T.
Nagase
,
H.
Naito
,
K.
Takimiya
, and
T.
Shiro
, “
Solution-processed dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene transistor memory based on phosphorus-doped silicon nanoparticles as a nano-floating gate
,”
Appl. Phys. Express
8
,
101601
(
2015
).
14.
K.-J.
Baeg
,
D.
Khim
,
D.-Y.
Kim
,
S.-W.
Jung
,
J. B.
Koo
, and
Y.-Y.
Noh
, “
Organic nano-floating-gate memory with polymer: [6,6]-phenyl-C61 butyric acid methyl ester composite films
,”
Jpn. J. Appl. Phys., Part 1
49
,
05EB01
(
2010
).
15.
T. T.
Dao
,
T.
Matsushima
, and
H.
Murata
, “
Organic nonvolatile memory transistors based on fullerene and an electron-trapping polymer
,”
Org. Electron.
13
,
2709
(
2012
).
16.
Y.
Zhou
,
S.-T.
Han
,
Y.
Yan
,
L.-B.
Huang
,
L.
Zhou
,
J.
Huang
, and
V. A. L.
Roy
, “
Solution processed molecular floating gate for flexible flash memories
,”
Sci. Rep.
3
,
3093
(
2013
).
17.
C.-C.
Shih
,
Y.-C.
Chiu
,
W.-Y.
Lee
,
J.-Y.
Chen
, and
W.-C.
Chen
, “
Conjugated polymer nanoparticles as nano floating gate electrets for high performance nonvolatile organic transistor memory devices
,”
Adv. Funct. Mater.
25
,
1511
(
2015
).
18.
H.-C.
Chang
,
C.
Lu
,
C.-L.
Liu
, and
W.-C.
Chen
, “
Single-crystal C60 needle/CuPc nanoparticle double floating-gate for low-voltage organic transistors based non-volatile memory devices
,”
Adv. Mater.
27
,
27
(
2015
).
19.
C. M.
Tran
,
H.
Sakai
,
Y.
Kawashima
,
K.
Ohkubo
,
S.
Fukuzumi
, and
H.
Murata
, “
Multi-level non-volatile organic transistor-based memory using lithium-ion-encapsulated fullerene as a charge trapping layer
,”
Org. Electron.
45
,
234
(
2017
).
20.
K.-J.
Baeg
,
Y.-Y.
Noh
,
H.
Sirringhaus
, and
D.-Y.
Kim
, “
Controllable shifts in threshold voltage of top-gate polymer field-effect transistors for applications in organic nano floating gate memory
,”
Adv. Funct. Mater.
20
,
224
(
2010
).
21.
W. L.
Leong
,
N.
Mathews
,
B.
Tan
,
S.
Vaidyanathan
,
F.
Dötz
, and
S.
Mhaisalkar
, “
Solution processed non-volatile top-gate polymer field-effect transistors
,”
J. Mater. Chem.
21
,
8971
(
2011
).
22.
M.
Kang
,
K.-J.
Baeg
,
D.
Khim
,
Y.-Y.
Noh
, and
D.-Y.
Kim
, “
Printed, flexible, organic nano-floating-gate memory: Effects of metal nanoparticles and blocking dielectrics on memory characteristics
,”
Adv. Funct. Mater.
23
,
3503
(
2013
).
23.
K.-J.
Baeg
,
D.
Khim
,
S.-W.
Jung
,
J. B.
Koo
,
I.-K.
You
,
Y.-C.
Nah
,
D.-Y.
Kim
, and
Y.-Y.
Noh
, “
Polymer dielectrics and orthogonal solvent effects for high-performance inkjet-printed top-gated p-channel polymer field-effect transistors
,”
ETRI J.
33
,
887
(
2011
).
24.
A. M.
Gaikwad
,
Y.
Khan
,
A. E.
Ostfeld
,
S.
Pandya
,
S.
Abraham
, and
A. C.
Arias
, “
Identifying orthogonal solvents for solution processed organic transistors
,”
Org. Electron.
30
,
18
(
2016
).
25.
W.
Wang
,
K. L.
Kim
,
S. M.
Cho
,
J. H.
Lee
, and
C.
Park
, “
Nonvolatile transistor memory with self-assembled semiconducting polymer nanodomain floating gates
,”
ACS Appl. Mater. Interfaces
8
,
33863
(
2016
).
26.
C.
Wu
,
W.
Wang
, and
J.
Song
, “
Molecular floating-gate organic nonvolatile memory with a fully solution processed core architecture
,”
Appl. Phys. Lett.
109
,
223301
(
2016
).
27.
F.
Shiono
,
H.
Abe
,
T.
Nagase
,
T.
Kobayashi
, and
H.
Naito
, “
Optical memory characteristics of solution-processed organic transistors with self-organized organic floating gates for printable multi-level storage devices
,”
Org. Electron.
67
,
109
(
2019
).
28.
J.
Li
,
Y.
Zhao
,
H. S.
Tan
,
Y.
Guo
,
C.-A.
Di
,
G.
Yu
,
Y.
Liu
,
M.
Lin
,
S. H.
Lim
,
Y.
Zhou
,
H.
Su
, and
B. S.
Ong
, “
A stable solution-processed polymer semiconductor with record high-mobility for printed transistors
,”
Sci. Rep.
2
,
754
(
2012
).
29.
X. Y.
Chin
,
G.
Pace
,
C.
Soci
, and
M.
Caironi
, “
Ambipolar charge distribution in donor-acceptor polymer field-effect transistors
,”
J. Mater. Chem. C
5
,
754
(
2017
).
30.
T.
Ohe
,
M.
Kuribayashi
,
R.
Yasuda
,
A.
Tsuboi
,
K.
Nomoto
,
K.
Satori
,
M.
Itabashi
, and
J.
Kasahara
, “
Solution-processed organic thin-film transistors with vertical nanophase separation
,”
Appl. Phys. Lett.
93
,
053303
(
2008
).
31.
J.
Kang
,
N.
Shin
,
D. Y.
Jang
,
V. M.
Prabhu
, and
D. Y.
Yoon
, “
Structure and properties of small molecule-polymer blend semiconductors for organic thin film transistors
,”
J. Am. Chem. Soc.
130
,
12273
(
2008
).
32.
N.
Onojima
,
T.
Ozawa
,
T.
Sugai
,
S.
Obata
,
Y.
Miyazawa
, and
J.
Yamanaka
, “
Sharp phase-separated interface of 6,13-bis(triisopropylsilylethynyl)pentacene/polystyrene blend films prepared by electrostatic spray deposition
,”
Org. Electron.
66
,
206
(
2019
).
33.
Polymer Handbook
, 4th ed., edited by
J.
Brandrup
,
E. H.
Immergut
, and
E. A.
Grulke
(
John Wiley & Sons, Inc
,
New York
,
1999
).
34.
F.-Y.
Lin
,
W. S. R.
Forrest
,
C. R.
Daley
,
Y.
Chai
, and
J. A.
Forrest
, “
Measuring the solubility of solids in non-solvents: Case of polystyrene in alkanes
,”
Eur. Phys. J. E
39
,
99
(
2016
).
35.
X.
Feng
,
Y.
Wang
,
G.
Lin
,
X.
Wang
,
X.
Wang
,
G.
Zhang
,
H.
Lu
, and
L.
Qiu
, “
Improving performance of selective-dewetting patterned organic transistors via semiconductor-dielectric blends
,”
Synth. Met.
194
,
59
(
2014
).
36.
N.
Onojima
,
K.
Hara
, and
A.
Nakamura
, “
Vertical phase separation of 6,13-bis(triisopropylsilylethynyl)pentacene/poly(methyl methacrylate) blends prepared by electrostatic spray deposition for organic field-effect transistors
,”
Jpn. J. Appl. Phys., Part 1
56
,
05EB03
(
2017
).
37.
K.-J.
Baeg
,
D.
Khim
,
D.-Y.
Kim
,
J. B.
Koo
,
I.-K.
You
,
W. S.
Choi
, and
Y.-Y.
Noh
, “
High mobility top-gated poly(3-hexylthiophene) field-effect transistors with high work-function Pt electrodes
,”
Thin Solid Films
518
,
4024
(
2010
).
38.
R. J.
Davis
,
M. T.
Lloyd
,
S. R.
Ferreira
,
M. J.
Bruzek
,
S. E.
Watkins
,
L.
Lindell
,
P.
Sehati
,
M.
Fahlman
,
J. E.
Anthony
, and
J. W. P.
Hsu
, “
Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment
,”
J. Mater. Chem.
21
,
1721
(
2011
).
39.
H. B.
Michaelson
, “
The work function of the elements and its periodicity
,”
J. Appl. Phys.
48
,
4729
(
1977
).
40.
C.-W.
Chu
,
S.-H.
Li
,
C.-W.
Chen
,
V.
Shrotriya
, and
Y.
Yang
, “
High-performance organic thin-film transistors with metal oxide/metal bilayer electrode
,”
Appl. Phys. Lett.
87
,
193508
(
2005
).
41.
T.
Matsushima
,
Y.
Kinoshita
, and
H.
Murata
, “
Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers
,”
Appl. Phys. Lett.
91
,
253504
(
2007
).
42.
D.
Kumaki
,
T.
Umeda
, and
S.
Tokito
, “
Reducing the contact resistance of bottom-contact pentacene thin-film transistors by employing a MoOx carrier injection layer
,”
Appl. Phys. Lett
92
,
013301
(
2008
).

Supplementary Material

You do not currently have access to this content.