Ultrasound B-mode imaging has been employed to monitor single agents and collective swarms of microrobots in vitro and ex vivo in controlled experimental conditions. However, low contrast and spatial resolution still limit the effective employment of such a method in a medical microrobotic scenario. Doppler-based ultrasound appears as a promising tool for tracking microrobots in echogenic and dynamic environments as biological tissues. In this Letter, we demonstrate that microrobot displacements can be used as a special signature for their visualization within echogenic media, where B-mode fails. To this aim, we induced vibrations of a magnetic soft microrobot through alternated magnetic fields and used ultrasound phase analysis to derive microrobot features such as size and position over time. By exploiting vibrations, we were able to perform imaging and tracking of a low contrast microrobot both in tissue-mimicking phantom and in chicken breast. The axial resolution was 38 μm, which is four times smaller than the B-mode resolution with the employed equipment. We also performed real-time tracking of the microrobot's positions along linear trajectories with a linear velocity up to 1 mm/s. Overall, the reported results pave the way for the application of the proposed approach for the robust monitoring of medical microrobots in tissue.

1.
B. J.
Nelson
,
I. K.
Kaliakatsos
, and
J. J.
Abbott
,
Annu. Rev. Biomed. Eng.
12
,
55
(
2010
).
2.
J.
Wang
,
R.
Dong
,
H.
Wu
,
Y.
Cai
, and
B.
Ren
,
Nano-Micro Lett.
12
,
1
(
2020
).
3.
X. Z.
Chen
,
B.
Jang
,
D.
Ahmed
,
C.
Hu
,
C.
De Marco
,
M.
Hoop
,
F.
Mushtaq
,
B. J.
Nelson
, and
S.
Pané
,
Adv. Mater.
30
,
1705061
(
2018
).
4.
H.
Ceylan
,
I. C.
Yasa
,
U.
Kilic
,
W.
Hu
, and
M.
Sitti
,
Prog. Biomed. Eng.
1
,
012002
(
2019
).
5.
M.
Medina-Sánchez
and
O. G.
Schmidt
,
Nat. News
545
,
406
(
2017
).
6.
A.
Aziz
,
S.
Pane
,
V.
Iacovacci
,
N.
Koukourakis
,
J.
Czarske
,
A.
Menciassi
,
M.
Medina-Sánchez
, and
O. G.
Schmidt
,
ACS Nano
14
(
9
),
10865
10893
(
2020
).
7.
D.
Li
,
M.
Jeong
,
E.
Oren
,
T.
Yu
, and
T.
Qiu
,
Robotics
8
,
87
(
2019
).
8.
E. E.
Niedert
,
C.
Bi
,
G.
Adam
,
E.
Lambert
,
L.
Solorio
,
C.
Goergen
, and
D. J.
Cappelleri
, bioRxiv (
2020
).
9.
Z.
Ren
,
T.
Wang
,
W.
Hu
, and
M.
Sitti
, in
Robotic Science Systems
(
2019
).
10.
F. A.
Blyakhman
,
L. Y.
Iskakova
,
M. T.
Lopez-Lopez
, and
A. Y.
Zubarev
,
J. Magn. Magn. Mater.
478
,
211
(
2019
).
11.
Q.
Wang
,
J.
Yu
,
K.
Yuan
,
L.
Yang
,
D.
Jin
, and
L.
Zhang
,
Appl. Mater. Today
18
,
100489
(
2020
).
12.
V.
Magdanz
,
I. S. M.
Khalil
,
J.
Simmchen
,
G. P.
Furtado
,
S.
Mohanty
,
J.
Gebauer
,
H.
Xu
,
A.
Klingner
,
A.
Aziz
,
M.
Medina-Sánchez
,
O. G.
Schmidt
, and
S.
Misra
,
Sci. Adv.
6
,
eaba5855
(
2020
).
13.
F.
Ongaro
,
D.
Niehoff
,
S.
Mohanty
, and
S.
Misra
,
Micromachines
10
,
504
(
2019
).
14.
Q.
Wang
,
L.
Yang
,
J.
Yu
,
P. W. Y.
Chiu
,
Y.-P.
Zheng
, and
L.
Zhang
,
IEEE Trans. Biomed. Eng.
67
(
12
),
3403
3412
(
2020
).
15.
I. S. M.
Khalil
,
P.
Ferreira
,
R.
Eleutério
,
C. L.
de Korte
, and
S.
Misra
, in
2014 IEEE International Conference on Robotics and Automation
(
IEEE
,
2014
), pp.
3807
3812
.
16.
J.
Yu
,
D.
Jin
,
K. F.
Chan
,
Q.
Wang
,
K.
Yuan
, and
L.
Zhang
,
Nat. Commun.
10
,
5631
(
2019
).
17.
R.
Bourdeau
,
A.
Lee-Gosselin
,
A.
Lakshmanan
,
S.
Kumar
,
A.
Farhadi
, and
M.
Shapiro
,
Nat. Publ. Gr.
553
,
86
(
2018
).
18.
T.
Segers
,
E.
Gaud
,
G.
Casqueiro
,
A.
Lassus
,
M.
Versluis
, and
P.
Frinking
,
Appl. Phys. Lett.
116
,
173701
(
2020
).
19.
A. G.
Pope
,
G.
Wu
,
F. Y.
McWhorter
,
E. P.
Merricks
,
T. C.
Nichols
,
T. J.
Czernuszewicz
,
C. M.
Gallippi
, and
A. L.
Oldenburg
,
Phys. Med. Biol.
58
,
7277
(
2013
).
20.
M.
Evertsson
,
M.
Cinthio
,
S.
Fredriksson
,
F.
Olsson
,
H.
Persson
, and
T.
Jansson
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
60
,
481
(
2013
).
21.
M.
Fink
,
S.
Lyer
,
C.
Alexiou
,
S. J.
Rupitsch
, and
H.
Ermert
,
Curr. Dir. Biomed. Eng.
5
,
417
(
2019
).
22.
M. W.
Urban
,
S.
Chen
, and
J. F.
Greenleaf
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
55
,
1956
(
2008
).
23.
H.
Azhari
,
Basics of Biomedical Ultrasound for Engineers
(
John Wiley and Sons
,
2010
).
24.
P.
Sysel
and
P.
Rajmic
,
EURASIP J. Adv. Signal Process.
2012
,
56
.
25.
H.
Azhari
,
Basics of Biomedical Ultrasound for Engineers
(
John Wiley & Sons
,
2010
).
26.
J.
Yu
,
B.
Wang
,
X.
Du
,
Q.
Wang
, and
L.
Zhang
,
Nat. Commun.
9
,
3260
(
2018
).
27.
W.
Hu
,
G. Z.
Lum
,
M.
Mastrangeli
, and
M.
Sitti
,
Nature
554
,
81
(
2018
).
28.
I. S. M.
Khalil
,
H. C.
Dijkslag
,
L.
Abelmann
, and
S.
Misra
,
Appl. Phys. Lett.
104
,
223701
(
2014
).
29.
K.
Vollmers
,
D. R.
Frutiger
,
B. E.
Kratochvil
, and
B. J.
Nelson
,
Appl. Phys. Lett.
92
,
144103
(
2008
).
30.
F.
Becker
,
V.
Lysenko
,
V. T.
Minchenya
,
O.
Kunze
, and
K.
Zimmermann
,
Microactuators and Micromechanisms
(
Springer
,
2017
), pp.
91
102
.

Supplementary Material

You do not currently have access to this content.