We demonstrate a means of detecting weak optical transitions in cold atoms that undergo cyclic (preparation, probing, and detection) routines with improved sensitivity. The gain in sensitivity is made by probing atoms on alternate cycles of a repeated experimental sequence, leading to regular modulation of the ground state atom population when at the resonance frequency. The atomic transition is identified by conducting a fast Fourier transform via an algorithm or instrument. We find an enhancement of detection sensitivity compared to more conventional scanning methods of 20 for the same sampling time, and can detect contemporary clock lines with fewer than 103 atoms in a magneto-optical trap. We apply the method to the (6s2)1S0(6s6p)3P0 clock transition in 171Yb and 173Yb. In addition, the ac-Stark shift of this line in 171Yb is measured to be 0.19(3) kHz W1 m2 at 556 nm.

1.
V. V.
Flambaum
,
A. J.
Geddes
, and
A. V.
Viatkina
, “
Isotope shift, nonlinearity of King plots, and the search for new particles
,”
Phys. Rev. A
97
,
032510
(
2018
).
2.
I.
Counts
,
J.
Hur
,
D. P. L.
Aude Craik
,
H.
Jeon
,
C.
Leung
,
J. C.
Berengut
,
A.
Geddes
,
A.
Kawasaki
,
W.
Jhe
, and
V.
Vuletić
, “
Evidence for nonlinear isotope shift in Yb+ search for new boson
,”
Phys. Rev. Lett.
125
,
123002
(
2020
).
3.
C.
Solaro
,
S.
Meyer
,
K.
Fisher
,
J. C.
Berengut
,
E.
Fuchs
, and
M.
Drewsen
, “
Improved isotope-shift-based bounds on bosons beyond the standard model through measurements of the D23/22D5/2 interval in Ca+
,”
Phys. Rev. Lett.
125
,
123003
(
2020
).
4.
M.
Takamoto
,
F.-L.
Hong
,
R.
Higashi
, and
H.
Katori
, “
An optical lattice clock
,”
Nature
435
,
321
(
2005
).
5.
A.
Ludlow
,
M.
Boyd
,
J.
Ye
,
E.
Peik
, and
P.
Schmidt
, “
Optical atomic clocks
,”
Rev. Mod. Phys.
87
,
637
701
(
2015
).
6.
P. T.
Greenland
, “
Laser isotope separation
,”
Contemp. Phys.
31
,
405
424
(
1990
).
7.
H.
Park
,
D.-H.
Kwon
,
Y. H.
Cha
,
T.-S.
Kim
,
J.
Han
,
K.-H.
Ko
,
D.-Y.
Jeong
, and
C.-J.
Kim
, “
Stable isotope production of 168Yb and 176Yb for industrial and medical applications
,”
J. Nucl. Sci. Technol.
45
,
111
116
(
2008
).
8.
U.
Köster
,
W.
Assmann
,
C.-O.
Bacri
,
T.
Faestermann
,
P.
Garrett
,
R.
Gernhäuser
, and
I.
Tomandl
, “
Electromagnetic isotope separation of gadolinium isotopes for the production of 152,155Tb for radiopharmaceutical applications
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
463
,
111
114
(
2020
).
9.
C.
Hoyt
,
Z.
Barber
,
C.
Oates
,
T.
Fortier
,
S.
Diddams
, and
L.
Hollberg
, “
Observation and absolute frequency measurements of the S103P0 optical clock transition in neutral ytterbium
,”
Phys. Rev. Lett.
95
,
083003
(
2005
).
10.
N.
Hinkley
,
J. A.
Sherman
,
N. B.
Phillips
,
M.
Schioppo
,
N. D.
Lemke
,
K.
Beloy
,
M.
Pizzocaro
,
C. W.
Oates
, and
A. D.
Ludlow
, “
An atomic clock with 1018 instability
,”
Science
341
,
1215
(
2013
).
11.
R.
Zinkstok
,
E. J.
van Duijn
,
S.
Witte
, and
W.
Hogervorst
, “
Hyperfine structure and isotope shift of transitions in Yb I using UV and deep-UV cw laser light and the angular distribution of fluorescence radiation
,”
J. Phys. B
35
,
2693
2701
(
2002
).
12.
J.
Weiner
,
V. S.
Bagnato
,
S.
Zilio
, and
P. S.
Julienne
, “
Experiments and theory in cold and ultracold collisions
,”
Rev. Mod. Phys.
71
,
1
85
(
1999
).
13.
S.
Tojo
,
M.
Kitagawa
,
K.
Enomoto
,
Y.
Kato
,
Y.
Takasu
,
M.
Kumakura
, and
Y.
Takahashi
, “
High-resolution photoassociation spectroscopy of ultracold ytterbium atoms by using the intercombination transition
,”
Phys. Rev. Lett.
96
,
153201
(
2006
).
14.
S. G.
Porsev
and
A.
Derevianko
, “
Hyperfine quenching of the metastable P30,2 states in divalent atoms
,”
Phys. Rev. A
69
,
042506
(
2004
).
15.
N.
Poli
,
Z.
Barber
,
N.
Lemke
,
C.
Oates
,
L.
Ma
,
J.
Stalnaker
,
T.
Fortier
,
S.
Diddams
,
L.
Hollberg
,
J.
Bergquist
,
A.
Brusch
,
S.
Jefferts
,
T.
Heavner
, and
T.
Parker
, “
Frequency evaluation of the doubly forbidden S10P30 transition in bosonic 174Yb
,”
Phys. Rev. A
77
,
050501
(
2008
).
16.
T.
Akatsuka
,
M.
Takamoto
, and
H.
Katori
, “
Three-dimensional optical lattice clock with bosonic 88Sr atoms
,”
Phys. Rev. A
81
,
023402
(
2010
).
17.
X.
Baillard
,
M.
Fouche
,
R. L.
Targat
,
P. G.
Westergaard
,
A.
Lecallier
,
Y. L.
Coq
,
G. D.
Rovera
,
S.
Bize
, and
P.
Lemonde
, “
Accuracy evaluation of an optical lattice clock with bosonic atoms
,”
Opt. Lett.
32
,
1812
(
2007
).
18.
M.
Yasuda
,
T.
Kishimoto
,
M.
Takamoto
, and
H.
Katori
, “
Photoassociation spectroscopy of 88Sr: Reconstruction of the wave function near the last node
,”
Phys. Rev. A
73
,
11403
(
2006
).
19.
T.
Zelevinsky
,
M. M.
Boyd
,
A. D.
Ludlow
,
T.
Ido
,
J.
Ye
,
R.
Ciurylo
,
P.
Naidon
, and
P. S.
Julienne
, “
Narrow line photoassociation in an optical lattice
,”
Phys. Rev. Lett.
96
,
203201
(
2006
).
20.
K. M.
Jones
,
E.
Tiesinga
,
P. D.
Lett
, and
P. S.
Julienne
, “
Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering
,”
Rev. Mod. Phys.
78
,
483
(
2006
).
21.
N.
Nemitz
,
F.
Baumer
,
F.
Munchow
,
S.
Tassy
, and
A.
Gorlitz
, “
Production of heteronuclear molecules in an electronically excited state by photoassociation in a mixture of ultracold Yb and Rb
,”
Phys. Rev. A
79
,
061403
(
2009
).
22.
A.
Guttridge
,
S. A.
Hopkins
,
M. D.
Frye
,
J. J.
McFerran
,
J. M.
Hutson
, and
S. L.
Cornish
, “
Production of ultracold Cs*Yb molecules by photoassociation
,”
Phys. Rev. A
97
,
063414
(
2018
).
23.
Lower temperature may be obtained with optimal MOT beam alignment.
24.
I.
Courtillot
,
A.
Quessada
,
R. P.
Kovacich
,
J.-J.
Zondy
,
A.
Landragin
,
A.
Clairon
, and
P.
Lemonde
, “
Efficient cooling and trapping of strontium atoms
,”
Opt. Lett.
28
,
468
(
2003
).
25.
F. C.
Reynolds
and
J. J.
McFerran
, “
Optical frequency stabilization with a synchronous frequency-to-voltage converter
,”
Appl. Opt.
58
,
3128
(
2019
).
26.
J. J.
McFerran
, “
Laser stabilization with a frequency-to-voltage chip for narrow-line laser cooling
,”
Opt. Lett.
43
,
1475
(
2018
).
27.
L.
Nenadović
and
J.
McFerran
, “
Clock and inter-combination line frequency separation in 171Yb
,”
J. Phys. B
49
,
065004
(
2016
).
28.
J. I.
Thorpe
,
K.
Numata
, and
J.
Livas
, “
Laser frequency stabilization and control through offset sideband locking to optical cavities
,”
Opt. Express
16
,
15980
(
2008
).
29.
N.
Kostylev
,
E.
Ivanov
,
M.
Tobar
, and
J.
McFerran
, “
Sub-Doppler cooling of ytterbium with the S101P1 transition including 171Yb (I=1/2)
,”
J. Opt. Soc. Am. B
31
,
1614
(
2014
).
30.
T. D.
Wickens
,
Elementary Signal Detection Theory
(
Oxford University Press
,
2002
).
31.
H. J.
Metcalf
and
P.
van der Straten
,
Laser Cooling and Trapping
(
Springer
,
1999
).
32.
S.
Mejri
,
J. J.
McFerran
,
L.
Yi
,
Y. L.
Coq
, and
S.
Bize
, “
Ultraviolet laser spectroscopy of neutral mercury in a one-dimensional optical lattice
,”
Phys. Rev. A
84
,
032507
(
2011
).
33.
See www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html for the recommended frequency of the 171Yb (6s2) 1S0 − (6s6p) 3P0 unperturbed optical transition.
34.
L.
Yi
,
S.
Mejri
,
J. J.
McFerran
,
Y.
Le Coq
, and
S.
Bize
, “
Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet S10P30 clock transition
,”
Phys. Rev. Lett
106
,
073005
(
2011
).
You do not currently have access to this content.