The piezoelectric modulus of wurtzite aluminum nitride (AlN) is a critical material parameter for electrical components, ultimately contributing to the energy efficiency and achievable bandwidth of modern communication devices. Here, we demonstrate that the introduction of metallic point-defects (Ti, Zr, Hf) improves the piezoelectric modulus of as-received, unstrained, epitaxially grown AlN. The metals are incorporated by ion implantation with an acceleration energy of 30 keV to a fluence of 1015 at cm−2, which causes an elongation along the wurtzite c-axis. The stored internal strain energy increases the piezoelectric polarization of the thin AlN layer. This can equivalently be described by an enhancement of the piezoelectric modulus d33. The incorporation of 0.1 at. % Ti enhances the piezoelectric modulus by ∼30%; significantly exceeding gains obtained by alloying with the same amount of Sc.

1.
O.
Ambacher
, “
Growth and applications of group III-nitrides
,”
J. Phys. D: Appl. Phys.
31
(
20
),
2653
2710
(
1998
).
2.
I.
Vurgaftman
and
J. R.
Meyer
, “
Band parameters for nitrogen-containing semiconductors
,”
J. Appl. Phys.
94
(
6
),
3675
3696
(
2003
).
3.
F.
Bernardini
,
V.
Fiorentini
, and
D.
Vanderbilt
, “
Spontaneous polarization and piezoelectric constants of III-V nitrides
,”
Phys. Rev. B
56
(
16
),
R10024
R10027
(
1997
).
4.
Y.
Taniyasu
,
M.
Kasu
, and
T.
Makimoto
, “
An aluminium nitride light-emitting diode with a wavelength of 210 nanometres
,”
Nature
441
(
7091
),
325
328
(
2006
).
5.
L. F.
Eastman
,
V.
Tilak
,
J.
Smart
,
B. M.
Green
,
E. M.
Chumbes
,
R.
Dimitrov
,
H.
Kim
,
O. S.
Ambacher
,
N.
Weimann
,
T.
Prunty
,
M.
Murphy
,
W. J.
Schaff
, and
J. R.
Shealy
, “
Undoped AlGaN/GaN HEMTs for microwave power amplification
,”
IEEE Trans. Electron Devices
48
(
3
),
479
485
(
2001
).
6.
B. E.
Foutz
,
S. K.
O'Leary
,
M. S.
Shur
, and
L. F.
Eastman
, “
Transient electron transport in wurtzite GaN, InN, and AIN
,”
J. Appl. Phys.
85
(
11
),
7727
7734
(
1999
).
7.
S.
Arulkumaran
,
G. I.
Ng
,
Z. H.
Liu
, and
C. H.
Lee
, “
High temperature power performance of AlGaNGaN high-electron-mobility transistors on high-resistivity silicon
,”
Appl. Phys. Lett.
91
(
8
),
083516
(
2007
).
8.
S.
Arulkumaran
,
G. I.
Ng
,
S.
Vicknesh
,
H.
Wang
,
K. S.
Ang
,
J. P. Y.
Tan
,
V. K.
Lin
,
S.
Todd
,
G. Q.
Lo
, and
S.
Tripathy
, “
Direct current and microwave characteristics of sub-micron AlGaN/GaN high-electron-mobility transistors on 8-inch Si(111) substrate
,”
Jpn. J. Appl. Phys., Part 1
51
,
111001
(
2012
).
9.
G.
Chen
,
X.
Zhao
,
X.
Wang
,
H.
Jin
,
S.
Li
,
S.
Dong
,
A. J.
Flewitt
,
W. I.
Milne
, and
J. K.
Luo
, “
Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer
,”
Sci. Rep.
5
,
9510
(
2015
).
10.
S.
Tadigadapa
and
K.
Mateti
, “
Piezoelectric MEMS sensors: State-of-the-art and perspectives
,”
Meas. Sci. Technol.
20
(
9
),
092001
(
2009
).
11.
K.
Tonisch
,
V.
Cimalla
,
C.
Foerster
,
H.
Romanus
,
O.
Ambacher
, and
D.
Dontsov
, “
Piezoelectric properties of polycrystalline AlN thin films for MEMS application
,”
Sens. Actuators, A
132
(
2
),
658
663
(
2006
).
12.
J.
Wang
,
M.
Park
,
S.
Mertin
,
T.
Pensala
,
F.
Ayazi
, and
A.
Ansari
, “
A film bulk acoustic resonator based on ferroelectric aluminum scandium nitride Films
,”
J. Microelectromech. Syst.
29
(
5
),
741
747
(
2020
).
13.
M.
Akiyama
,
T.
Kamohara
,
K.
Kano
,
A.
Teshigahara
,
Y.
Takeuchi
, and
N.
Kawahara
, “
Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering
,”
Adv. Mater.
21
(
5
),
593
596
(
2009
).
14.
A.
Zukauskaite
,
G.
Wingqvist
,
J.
Palisaitis
,
J.
Jensen
,
P. O. A.
Persson
,
R.
Matloub
,
P.
Muralt
,
Y.
Kim
,
J.
Birch
, and
L.
Hultman
, “
Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAl1-xN thin films
,”
J. Appl. Phys.
111
(
9
),
093527
(
2012
).
15.
M.
Akiyama
,
K.
Kano
, and
A.
Teshigahara
, “
Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films
,”
Appl. Phys. Lett.
95
(
16
),
162107
(
2009
).
16.
T.
Yokoyama
,
Y.
Iwazaki
,
Y.
Onda
,
T.
Nishihara
,
Y.
Sasajima
, and
M.
Ueda
, “
Highly piezoelectric co-doped AlN thin films for wideband FBAR applications
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
62
(
6
),
1007
1015
(
2015
).
17.
M.
Akiyama
,
T. K. N.
Ueno
,
K.
Kano
,
A.
Teshigahara
,
Y.
Takeuchi
, and
N.
Kawahara
, “
Piezoelectric thin film, piezoelectric material, and fabrication method of piezoelectric thin film and piezoelectric material, and piezoelectric resonator, actuator element, and physical sensor using piezoelectric thin film
,” U.S. patent 7,758,979 B2 (
2010
).
18.
D.
Nilsson
,
E.
Janzén
, and
A.
Kakanakova-Georgieva
, “
Lattice parameters of AlN bulk, homoepitaxial and heteroepitaxial material
,”
J. Phys. D: Appl. Phys.
49
(
17
),
175108
(
2016
).
19.
M. A.
Caro
,
S.
Zhang
,
T.
Riekkinen
,
M.
Ylilammi
,
M. A.
Moram
,
O.
Lopez-Acevedo
,
J.
Molarius
, and
T.
Laurila
, “
Piezoelectric coefficients and spontaneous polarization of ScAlN
,”
J. Phys. Condens. Matter
27
(
24
),
245901
(
2015
).
20.
D. N.
Faye
,
M.
Döbeli
,
E.
Wendler
,
F.
Brunner
,
M.
Weyers
,
S.
Magalhães
,
E.
Alves
, and
K.
Lorenz
, “
Crystal damage analysis of implanted AlxGa1-xN (0≤x≤1) by ion beam techniques
,”
Surf. Coat. Technol.
355
,
55
60
(
2018
).
21.
D. N.
Faye
,
E.
Wendler
,
M.
Felizardo
,
S.
Magalhães
,
E.
Alves
,
F.
Brunner
,
M.
Weyers
, and
K.
Lorenz
, “
Mechanisms of implantation damage formation in AlxGa1-xN compounds
,”
J. Phys. Chem. C
120
(
13
),
7277
7283
(
2016
).
22.
H.
Fiedler
,
V.
Jovic
,
D. R. G.
Mitchell
,
J.
Leveneur
,
E.
Anquillare
,
K. E.
Smith
, and
J.
Kennedy
, “
Tuning the electromechanical properties and polarization of aluminium nitride by ion beam-induced point defects
,”
Acta Mater.
203
,
116495
(
2021
).
23.
H.
Fiedler
,
P.
Gupta
,
J.
Kennedy
, and
A.
Markwitz
, “
28 Si + ion beams from Penning ion source based implanter systems for near-surface isotopic purification of silicon
,”
Rev. Sci. Instrum.
89
(
12
),
123305
(
2018
).
24.
A.
Markwitz
and
J.
Kennedy
, “
Group-IV and v ion implantation into nanomaterials and elemental analysis on the nanometre scale
,”
Int. J. Nanotechnol.
6
(
3–4
),
369
383
(
2009
).
25.
K.
Lorenz
,
E.
Wendler
,
A.
Redondo-Cubero
,
N.
Catarino
,
M. P.
Chauvat
,
S.
Schwaiger
,
F.
Scholz
,
E.
Alves
, and
P.
Ruterana
, “
Implantation damage formation in a-, c-, and m-plane GaN
,”
Acta Mater.
123
,
177
187
(
2017
).
26.
S.
Kim
,
D.
Seol
,
X.
Lu
,
M.
Alexe
, and
Y.
Kim
, “
Electrostatic-free piezoresponse force microscopy
,”
Sci. Rep.
7
,
41657
(
2017
).
27.
J. M.
Wagner
and
F.
Bechstedt
, “
Properties of strained wurtzite GaN and AlN: Ab initio studies
,”
Phys. Rev. B
66
(
11
),
15202
(
2002
).
28.
V.
Lughi
and
D. R.
Clarke
, “
Defect and stress characterization of AlN films by Raman spectroscopy
,”
Appl. Phys. Lett.
89
(
24
),
241911
(
2006
).
29.
K.
Shojiki
,
Y.
Hayashi
,
K.
Uesugi
, and
H.
Miyake
, “
Local and anisotropic strain in AlN film on sapphire observed by Raman scattering spectroscopy
,”
Jpn. J. Appl. Phys., Part 1
58
(
SC
),
SCCB17
(
2019
).
30.
S.
Yang
,
R.
Miyagawa
,
H.
Miyake
,
K.
Hiramatsu
, and
H.
Harima
, “
Raman scattering spectroscopy of residual stresses in epitaxial AlN films
,”
Appl. Phys. Express
4
(
3
),
031001
(
2011
).
31.
C.
Kisielowski
,
J.
Krüger
,
S.
Ruvimov
,
T.
Suski
,
J.
Ager
,
E.
Jones
,
Z.
Liliental-Weber
,
M.
Rubin
,
E.
Weber
,
M.
Bremser
, and
R.
Davis
, “
Strain-related phenomena in GaN thin films
,”
Phys. Rev. B
54
(
24
),
17745
17753
(
1996
).
32.
T.
Pornphatdetaudom
,
K.
Yoshida
, and
T.
Yano
, “
Recovery behavior of neutron-irradiated aluminum nitride with and without containing interstitial dislocation loops
,”
J. Nucl. Mater.
543
,
152584
(
2021
).
33.
N.
Hecking
,
K. F.
Heidemann
, and
E.
Te Kaat
, “
Model of temperature dependent defect interaction and amorphization in crystalline silicon during ion irradiation
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
15
(
1–6
),
760
764
(
1986
).
34.
E.
Wendler
, “
Mechanisms of damage formation in semiconductors
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
267
(
16
),
2680
2689
(
2009
).
35.
E.
Wendler
and
W.
Wesch
, “
Ar implantation of InSb and AlN at 15 K
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
242
(
1–2
),
562
564
(
2006
).
36.
N.
Mante
,
S.
Rennesson
,
E.
Frayssinet
,
L.
Largeau
,
F.
Semond
,
J. L.
Rouvière
,
G.
Feuillet
, and
P.
Vennéguès
, “
Proposition of a model elucidating the AlN-on-Si (111) microstructure
,”
J. Appl. Phys.
123
(
21
),
215701
(
2018
).
37.
W.
Möller
and
W.
Eckstein
, “
Tridyn—A TRIM simulation code including dynamic composition changes
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
2
(
1–3
),
814
818
(
1984
).
38.
B.
Saha
,
S.
Saber
,
E. A.
Stach
,
E. P.
Kvam
, and
T. D.
Sands
, “
Understanding the rocksalt-to-wurtzite phase transformation through microstructural analysis of (Al,Sc)N epitaxial thin films
,”
Appl. Phys. Lett.
109
(
17
),
172102
(
2016
).
39.
I. L.
Guy
,
S.
Muensit
, and
E. M.
Goldys
, “
Extensional piezoelectric coefficients of gallium nitride and aluminum nitride
,”
Appl. Phys. Lett.
75
(
26
),
4133
4135
(
1999
).
40.
C. M.
Lueng
,
H. L. W.
Chan
,
C.
Surya
, and
C. L.
Choy
, “
Piezoelectric coefficient of aluminum nitride and gallium nitride
,”
J. Appl. Phys.
88
(
9
),
5360
5363
(
2000
).
41.
B. J.
Rodriguez
,
A.
Gruverman
,
A. I.
Kingon
, and
R. J.
Nemanich
, “
Piezoresponse force microscopy for piezoelectric measurements of III-nitride materials
,”
J. Cryst. Growth
246
(
3–4
),
252
258
(
2002
).
42.
F.
Martin
,
P.
Muralt
,
M. A.
Dubois
, and
A.
Pezous
, “
Thickness dependence of the properties of highly c-axis textured AIN thin films
,”
J. Vac. Sci. Technol., A
22
(
2
),
361
365
(
2004
).
43.
X.
Wang
and
A.
Yoshikawa
, “
Molecular beam epitaxy growth of GaN, AlN and InN
,”
Prog. Cryst. Growth Charact. Mater.
48–49
(
1–3
),
42
103
(
2004
).
44.
T.
Prokofyeva
,
M.
Seon
,
J.
Vanbuskirk
,
M.
Holtz
,
S. A.
Nikishin
,
N. N.
Faleev
,
H.
Temkin
, and
S.
Zollner
, “
Vibrational properties of AlN grown on (111)-oriented silicon
,”
Phys. Rev. B
63
(
12
),
125313
(
2001
).
45.
H. J.
Choi
,
Y. S.
Jung
,
J.
Han
, and
Y. S.
Cho
, “
In-situ stretching strain-driven high piezoelectricity and enhanced electromechanical energy-harvesting performance of a ZnO nanorod-array structure
,”
Nano Energy
72
,
104735
(
2020
).
46.
G.
Tan
,
K.
Maruyama
,
Y.
Kanamitsu
,
S.
Nishioka
,
T.
Ozaki
,
T.
Umegaki
,
H.
Hida
, and
I.
Kanno
, “
Crystallographic contributions to piezoelectric properties in PZT thin films
,”
Sci. Rep.
9
(
1
),
7309
(
2019
).
47.
M. A.
Caro
,
S.
Schulz
, and
E. P.
O'Reilly
, “
Theory of local electric polarization and its relation to internal strain: Impact on polarization potential and electronic properties of group-III nitrides
,”
Phys. Rev. B
88
(
21
),
214103
(
2013
).
48.
F.
Tasnádi
,
B.
Alling
,
C.
Höglund
,
G.
Wingqvist
,
J.
Birch
,
L.
Hultman
, and
I. A.
Abrikosov
, “
Origin of the anomalous piezoelectric response in wurtzite ScxAl1-xN alloys
,”
Phys. Rev. Lett.
104
(
13
),
137601
(
2010
).

Supplementary Material

You do not currently have access to this content.