We introduce a carbon allotrope with rhombic symmetry and a high crystal density reached 3.56 g/cm3, named Pn-C10, which was found using an unbiased particle-swarm structural-searching technique. This fully sp3-bonded carbon phase is dynamically and mechanically stable in its ground state. Results from our calculations reveal the excellent mechanical nature of Pn-C10 with a claimed shear modulus and Vickers hardness of 484 GPa and 88.45 GPa, respectively, which also suggested its slight anisotropy in elasticity. The predicted electronic band structure indicates that Pn-C10 is an indirect-bandgap material with a bandgap of 5.05 eV. Natural tiling analysis and simulations of x-ray diffraction and Raman spectra were performed to provide insights for further studies into Pn-C10 and other carbon phases.

1.
R.
Hoffmann
,
A. A.
Kabanov
,
A. A.
Golov
, and
D. M.
Proserpio
, “
Homo citans and carbon allotropes: For an ethics of citation
,”
Angew. Chem., Int. Ed.
55
(
37
),
10962
10976
(
2016
).
2.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The triggering role of carrier mobility in the fractional quantum Hall effect formation: An evidence in graphene
,”
Rev. Mod. Phys.
81
,
109
(
2009
).
3.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
,
183
191
(
2007
).
4.
W. L.
Mao
,
H.
Mao
,
P. J.
Eng
,
T. P.
Trainor
,
M.
Newville
,
C.
Kao
,
D. L.
Heinz
,
J.
Shu
,
Y.
Meng
, and
R. J.
Hemley
, “
Bonding changes in compressed superhard graphite
,”
Science
302
,
425
427
(
2003
).
5.
Q.
Huang
,
D.
Yu
,
B.
Xu
,
W.
Hu
,
Y.
Ma
,
Y.
Wang
,
Z.
Zhao
,
B.
Wen
,
J.
He
,
Z.
Liu
 et al, “
Nanotwinned diamond with unprecedented hardness and stability
,”
Nature
510
,
250
253
(
2014
).
6.
J.
Li
and
R. Q.
Zhang
, “
New superhard carbon allotropes based on C20 fullerene
,”
Carbon
63
,
571
573
(
2013
).
7.
J. F. R. V.
Silveira
and
A. R.
Muniz
, “
Diamond nanothread-based 2D and 3D materials: Diamond nanomeshes and nanofoams
,”
Carbon
139
,
789
800
(
2018
).
8.
Q.
Li
,
Y.
Ma
,
A. R.
Oganov
,
H.
Wang
,
H.
Wang
,
Y.
Xu
,
T.
Cui
,
H.
Mao
, and
G.
Zou
, “
Superhard monoclinic polymorph of carbon
,”
Phys. Rev. Lett.
102
,
175506
(
2009
).
9.
K.
Umemoto
,
R. M.
Wentzcovitch
,
S.
Saito
, and
T.
Miyake
, “
Body-centered tetragonal C4: A viable sp3 carbon allotrope
,”
Phys. Rev. Lett.
104
,
125504
(
2010
).
10.
J.
Zhang
,
R.
Wang
,
X.
Zhu
,
A.
Pan
,
C.
Han
,
X.
Li
,
D.
Zhao
,
C.
Ma
,
W.
Wang
,
H.
Su
 et al, “
Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol
,”
Nat. Commun.
8
,
683
(
2017
).
11.
J. T.
Wang
,
C.
Chen
, and
Y.
Kawazoe
, “
Low-temperature phase transformation from graphite to sp3 orthorhombic carbon
,”
Phys. Rev. Lett.
106
,
075501
(
2011
).
12.
Z.
Li
,
F.
Gao
, and
Z.
Xu
, “
Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: First-principles calculations
,”
Phys. Rev. B
85
,
144115
(
2012
).
13.
X.
Yang
,
M.
Yao
,
X.
Wu
,
S.
Liu
,
S.
Chen
,
K.
Yang
,
R.
Liu
,
T.
Cui
,
B.
Sundqvist
, and
B.
Liu
, “
Novel superhard sp3 carbon allotrope from cold-compressed C70 peapods
,”
Phys. Rev. Lett.
118
,
245701
(
2017
).
14.
Q.
Wei
,
Q.
Zhang
,
H.
Yan
,
M.
Zhang
, and
B.
Wei
, “
A new tetragonal superhard metallic carbon allotrope
,”
J. Alloys Compd.
769
,
347
352
(
2018
).
15.
F.
Delodovici
,
N.
Manini
,
R. S.
Wittman
,
D. S.
Choi
,
M. Al.
Fahim
, and
L. A.
Burchfield
, “
Protomene: A new carbon allotrope
,”
Carbon
126
,
574
579
(
2018
).
16.
Y. L.
Pan
,
M.
Hu
,
M. D.
Ma
,
Z. H.
Li
,
Y. F.
Gao
,
M.
Xiong
,
G.
Gao
,
Z.
Zhao
,
Y.
Tian
,
B.
Xu
 et al, “
Multithreaded conductive carbon: 1D conduction in 3D carbon
,”
Carbon
115
,
584
(
2017
).
17.
M.
Hu
,
M.
Ma
,
Z.
Zhao
,
D.
Yu
, and
J.
He
, “
Superhard sp2-sp3 hybrid carbon allotropes with tunable electronic properties
,”
AIP Adv.
6
,
055020
(
2016
).
18.
X. G.
Yang
,
C. F.
Lv
,
S. J.
Liu
,
J. H.
Zang
,
J. X.
Qin
,
M. R.
Du
,
D.
Yang
,
X.
Li
,
B.
Liu
, and
C.
Shan
, “
Orthorhombic C14 carbon: A novel superhard sp3 carbon allotrope
,”
Carbon
156
,
309
312
(
2020
).
19.
C. X.
Zhao
,
C. Y.
Niu
,
Z. J.
Qin
,
X. Y.
Ren
,
J.-T.
Wang
,
J. H.
Cho
, and
Y.
Jia
, “
H18 carbon: A new metallic phase with sp2-sp3 hybridized bonding network
,”
Sci. Rep
6
,
21879
(
2016
).
20.
J.
Liu
,
T.
Zhao
,
S.
Zhang
, and
Q.
Wang
, “
A new metallic carbon allotrope with high stability and potential for lithium ion battery anode material
,”
Nano Energy
38
,
263
270
(
2017
).
21.
D. M.
Proserpio
,
A. A.
Golov
, and
A. A.
Kabanov
, see http://sacada.sctms.ru/ for “The Samara Carbon Allotrope Database—SACADA,
2012
.”
22.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
Crystal structure prediction via particle-swarm optimization
,”
Phys. Rev. B
82
,
094116
(
2010
).
23.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
CALYPSO: A method for crystal structure prediction
,”
Comput. Phys. Commun.
183
,
2063
2070
(
2012
).
24.
H.
Niu
,
X. Q.
Chen
,
S.
Wang
,
D.
Li
,
W. L.
Mao
, and
Y.
Li
, “
Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes
,”
Phys. Rev. Lett.
108
,
135501
(
2012
).
25.
J. Q.
Wang
,
C. X.
Zhao
,
C. Y.
Niu
,
Q.
Sun
, and
Y.
Jia
, “
C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities
,”
J. Phys.
28
,
475402
(
2016
).
26.
Z.
Zhu
,
X.
Cai
,
S.
Yi
,
J.
Chen
,
Y.
Dai
,
C.
Niu
,
Z.
Guo
,
M.
Xie
,
F.
Liu
,
J. H.
Chao
 et al, “
Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study
,”
Phys. Rev. Lett.
119
,
106101
(
2017
).
27.
X.
Wu
,
X.
Shi
,
M.
Yao
,
S.
Liu
,
X.
Yang
,
L.
Zhu
,
T.
Cui
, and
B.
Liu
, “
Superhard three-dimensional carbon with metallic conductivity
,”
Carbon
123
,
311
317
(
2017
).
28.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
(
16
),
11169
(
1996
).
29.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
30.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allan
,
A. J.
Arias
, and
T. A.
Joannopoulos
, “
Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients
,”
Rev. Mod. Phys.
64
(
4
),
1045
(
1992
).
31.
D.
Vanderbilt
, “
Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
,”
Phys. Rev. B
41
(
11
),
7892
(
1990
).
32.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
, “
Influence of the exchange screening parameter on the performance of screened hybrid functionals
,”
J. Chem. Phys.
125
,
224106
(
2006
).
33.
X.
Gonze
and
C.
Lee
, “
Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density functional perturbation theory
,”
Phys. Rev. B
55
(
16
),
10355
(
1997
).
34.
F.
Gao
,
J.
He
,
E.
Wu
,
S.
Liu
,
D.
Yu
,
D.
Li
,
S.
Zhang
, and
Y.
Tian
, “
Hardness of covalent crystals
,”
Phys. Rev. Lett.
91
(
1
),
015502
(
2003
).
35.
X. Q.
Chen
,
H.
Niu
,
D.
Li
, and
Y.
Li
, “
Modeling hardness of polycrystalline materials and bulk metallic glasses
,”
Intermetallics
19
,
1275
1281
(
2011
).
36.
J. P.
Watt
, “
Hashinshtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry
,”
J. Appl. Phys.
51
(
3
),
1520
1524
(
1980
).
37.
Q.
Zhu
,
A. R.
Oganov
,
M. A.
Salvado
,
P.
Pertierra
, and
A. O.
Lyakhov
, “
Denser than diamond: Ab initio search for superdense carbon allotropes
,”
Phys. Rev. B
83
,
193410
(
2011
).
38.
R.
Hill
, “
The elastic behaviour of a crystalline aggregate
,”
Proc. Phys. Soc., London Sect. A
65
,
349
354
(
1952
).
39.
Z. Z.
Li
,
J. T.
Wang
,
H.
Mizuseki
, and
C.
Chen
, “
Computational discovery of a new rhombohedral diamond phase
,”
Phys. Rev. B
98
,
094107
(
2018
).
40.
F.
Occelli
,
P.
Loubeyre
, and
R.
LeToullec
, “
Properties of diamond under hydrostatic pressures up to 140 GPa
,”
Nat. Mater.
2
,
151
154
(
2003
).
41.
S. F.
Pugh
, “
Relations between the elastic moduli and the plastic proper ties of polycrystalline pure metals
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
45
(
367
),
823
843
(
1954
).
42.
X. Q.
Chen
,
H.
Niu
,
C.
Franchini
,
D. Z.
Li
, and
Y.
L
, “
Hardness of T-carbon: Density functional theory calculations
,”
Phys. Rev. B
84
,
121405(R)
(
2011
).
43.
A.
Marmier
,
Z. A.
Lethbridge
,
R. I.
Walton
,
C. W.
Smith
,
S. C.
Parker
, and
K. E.
Evans
, “
ELAM: A computer program for the analysis and representation of anisotropic elastic properties
,”
Comput. Phys. Commun.
181
(
12
),
2102
2115
(
2010
).
44.
S. I.
Ranganathan
and
M.
Ostoja-Starzewski
,
Phys. Rev. Lett.
101
,
055504
(
2008
).
45.
P.
Ravindran
,
L.
Fast
,
P. A.
Korzhavyi
,
B.
Johansson
,
J.
Wills
, and
O.
Eriksson
, “
Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2
,”
J. Appl. Phys.
84
(
9
),
4891
4904
(
1998
).
46.
N. A.
Anurova
,
V. A.
Blatov
,
G. D.
Ilyushin
, and
D. M.
Proserpio
, “
Natural tilings for zeolite-type frameworks
,”
J. Phys. Chem. C
114
(
22
),
10160
10170
(
2010
).
47.
V. A.
Blatov
,
M.
O'Keeffe
, and
D. M.
Proserpio
, “
Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: Recommended terminology
,”
CrystEngComm
12
(
1
),
44
48
(
2010
).
48.
V. A.
Blatov
,
A. P.
Shevchenko
, and
D. M.
Proserpio
, “
Applied topological analysis of crystal structures with the program package ToposPro
,”
Crys. Growth Des.
14
(
7
),
3576
3586
(
2014
).
49.
W. G.
Fateley
,
N. t
McDevitt
, and
F. F.
Bentley
, “
Infrared and Raman selection rules for lattice vibrations: The correlation method
,”
Appl. Spectrosc.
25
,
155
(
1971
).

Supplementary Material

You do not currently have access to this content.