We demonstrate optical coherence tomography based on an SU(1,1) nonlinear interferometer with high-gain parametric downconversion. For imaging and sensing applications, this scheme promises to outperform previous experiments working at low parametric gain, since higher photon fluxes provide lower integration times for obtaining high-quality images. In this way, one can avoid using single-photon detectors or CCD cameras with very high sensitivities, and standard spectrometers can be used instead. Other advantages are higher sensitivity to small loss and amplification before detection so that the detected light power considerably exceeds the probing one.

1.
D.
Huang
,
E. A.
Swanson
,
C. P.
Lin
,
J. S.
Schuman
,
W. G.
Stinson
,
W.
Chang
,
M. R.
Hee
,
T.
Flotte
,
K.
Gregory
,
C. A.
Puliafito
, and
J. G.
Fujimoto
, “
Optical coherence tomography
,”
Science
254
,
1178
(
1991
).
2.
T.
Dresel
,
G.
Häusler
, and
H.
Venzke
, “
Three-dimensional sensing of rough surfaces by coherence radar
,”
Appl. Opt.
31
,
919
(
1992
).
3.
See www.octnews.org for reports in advances of optical coherence tomography.
4.
Optical Coherence Tomography, Technbology and Applications
, Biological and Medical Physics Series, edited by
W.
Drexel
and
J. G.
Fujimoto
(
Springer
,
2008
).
5.
D. C.
Adler
,
J.
Stenger
,
I.
Gorczynska
,
H.
Lie
,
T.
Hensick
,
R.
Spronk
,
S.
Wolohojiana
,
N.
Khandekar
,
J. Y.
Jiang
,
S.
Barry
,
A. E.
Cable
,
R.
Huber
, and
J. G.
Fujimoto
, “
Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies
,”
Opt. Express
15
,
15972
(
2007
).
6.
J.
Le Gouet
,
D.
Venkatraman
,
F. N. C.
Wong
, and
J. H.
Shapiro
, “
Classical low-coherence interferometry based on broadband parametric fluorescence and amplification
,”
Opt. Express
17
,
17874
(
2009
).
7.
A.
Vallés
,
G.
Jiménez
,
L. J.
Salazar-Serrano
, and
J. P.
Torres
, “
Optical sectioning in induced coherence tomography with frequency-entangled photons
,”
Phys. Rev. A
97
,
023824
(
2018
).
8.
A. V.
Paterova
,
H.
Yang
,
C.
An
,
D. A.
Kalashnikov
, and
L. A.
Krivitsky
, “
Tunable optical coherence tomography in the infrared range using visible photons
,”
Quantum Sci. Technol.
3
,
025008
(
2018
).
9.
A.
Vanselow
,
P.
Kaufmann
,
I.
Zorin
,
B.
Heise
,
H.
Chrzanowski
, and
S.
Ramelow
, “
Mid-infrared frequency-domain optical coherence tomography with undetected photons
,” arXiv:2006.07400 (
2020
).
10.
M. V.
Chekhova
and
Z. Y.
Ou
, “
Nonlinear interferometers in quantum optics
,”
Adv. Opt. Photonics
8
,
104
(
2016
).
11.
X. Y.
Zou
,
L. J.
Wang
, and
L.
Mandel
, “
Induced coherence and indistinguishability in optical interference
,”
Phys. Rev. Lett.
67
,
318
(
1991
).
12.
X. Y.
Zou
,
T. P.
Grayson
, and
L.
Mandel
, “
Observation of quantum interference effects in the frequency domain
,”
Phys. Rev. Lett.
69
,
3041
(
1992
).
13.
B.
Yurke
,
S. L.
McCall
, and
J. R.
Klauder
, “
SU(2) and SU(1,1) interferometers
,”
Phys. Rev. A
33
,
4033
4054
(
1986
).
14.
G. B.
Lemos
,
V.
Borish
,
G. D.
Cole
,
S.
Ramelow
,
R.
Lapkiewicz
, and
A.
Zeilinger
, “
Quantum imaging with undetected photons
,”
Nature
512
,
409
(
2014
).
15.
A. C.
Cardoso
,
L. P.
Berruezo
,
D. F.
Avila
,
G. B.
Barreto
,
W. M.
Pimenta
,
C. H.
Monken
,
P. L.
Saldanha
, and
S.
Padua
, “
Classical imaging with undetected light
,”
Phys. Rev. A
97
,
033827
(
2018
).
16.
M.
Kutas
,
B.
Haase
,
P.
Bickert
,
F.
Riexinger
,
D.
Molter
, and
G.
von Freymann
, “
Terahertz quantum sensing
,”
Sci. Adv.
6
,
EAAZ8065
(
2020
).
17.
D. A.
Kalashnikov
,
A. V.
Paterova
,
S. P.
Kulik
, and
L. A.
Krivitsky
, “
Infrared spectroscopy with visible light
,”
Nat. Photonics
10
,
98
(
2016
).
18.
A. V.
Paterova
,
H.
Yang
,
D.
Kalashnikov
, and
L.
krivitsky
, “
Measurement of infrared optical constants with visible photons
,”
New J. Phys.
20
,
043015
(
2018
).
19.
I.
Kviatkovsky
,
H. M.
Chrzanowski
,
E. G.
Avery
,
H.
Bartolomaeus
, and
S.
Ramelow
, “
Microscopy with undetected photons in the mid-infrared
,” arXiv:2002.05960 (
2020
).
20.
A. V.
Paterova
,
M. M.
Sivakumar
,
H.
Yang
,
G.
Grenci
, and
L. A.
Krivitsky
, “
Hyperspectral infrared microscopy with visible light
,” arXiv:2002.05956 (
2020
).
21.
B.
Dayan
,
A.
Pe'er
,
A.
Friesem
, and
Y.
Silberberg
, “
Nonlinear interactions with an ultrahigh flux of broadband entangled photons
,”
Phys. Rev. Lett.
94
,
043602
(
2005
).
22.
T. S.
Iskhakov
,
A. M.
Pérez
,
K. Y.
Spasibko
,
M. V.
Chekhova
, and
G.
Leuchs
, “
Superbunched bright squeezed vacuum state
,”
Opt. Lett.
37
,
1919
(
2012
).
23.
M.
Kolobov
,
E.
Giese
,
S.
Lemieux
,
R.
Fickler
, and
R. W.
Boyd
, “
Controlling induced coherence for quantum imaging
,”
J. Opt.
19
,
054003
(
2017
).
24.
G.
Frascella
,
E. E.
Mikhailov
,
N.
Takanashi
,
V. V.
Zakharov
,
O. V. O. V.
Tikhonova
, and
M. V.
Chekhova
, “
Wide-field SU(1,1) interferometer
,”
Optica
6
,
1233
(
2019
).
25.
K. Y.
Spasibko
,
T. S.
Iskhakov
, and
M. V.
Chekhova
, “
Spectral properties of high-gain parametric down-conversion
,”
Opt. Express
20
,
7507
(
2012
).
26.
B.
Dayan
, “
Theory of two-photon interactions with broadband down-converted light and entangled photons
,”
Phys. Rev. A
76
,
043813
(
2007
).
27.
A. V.
Belinsky
and
D. N.
Klyshko
, “
Induced coherence with and without induced emission
,”
Phys. Lett. A
166
,
303
(
1992
).
28.
H. M.
Wiseman
and
K.
Molmer
, “
Interference of classical and non-classical light
,”
Phys. Lett. A
270
,
245
(
2000
).
29.
A.
Heuer
,
R.
Menzel
, and
P. W.
Milonni
, “
Complementarity in biphoton generation with stimulated or induced coherence
,”
Phys. Rev. A
92
,
033834
(
2015
).
30.
J. F.
de Boer
, “
Spectral/Fourier domain optical coherence tomography
,”
Chapter 5 in Optical Coherence Tomography
, Biological and Medical Physics Series, edited by
W.
Drexel
and
J. G.
Fujimoto
(
Springer
,
2008
).
31.
M. A.
Choma
,
M. V.
Sarunic
,
C.
Yang
, and
J. A.
Izatt
, “
Sensitivity advantage of swept source and Fourier domain optical coherence tomography
,”
Opt. Express
11
,
2183
2189
(
2003
).
32.
M. B.
Nasr
,
S.
Carrasco
,
B. E. A.
Saleh
,
A. V.
Sergienko
,
M. C.
Teich
,
J. P.
Torres
,
L.
Torner
,
D. S.
Hum
, and
M. M.
Fejer
, “
Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion
,”
Phys. Rev. Lett.
100
,
183601
(
2008
).
33.
M.
Hendrych
,
X.
Shi
,
A.
Valencia
, and
J. P.
Torres
, “
Broadening the bandwidth of entangled photons: A step towards the generation of extremely short biphotons
,”
Phys. Rev. A
79
,
023817
(
2009
).
34.
P.
Abolghasem
,
M.
Hendrych
,
X.
Shi
,
J. P.
Torres
, and
A. S.
Helmy
, “
Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides
,”
Opt. Lett.
34
,
2000
(
2009
).
35.
A.
Vanselow
,
P.
Kaufmann
,
H. M.
Chrzanowski
, and
S.
Ramelow
, “
Ultra-broadband SPDC for spectrally far separated photon pairs
,”
Opt. Lett.
44
,
4638
(
2019
).
36.
R.
Tripathi
,
N.
Nassif
,
J. S.
Nelson
,
B. H.
Park
, and
J. F.
de Boer
, “
Spectral shaping for non-Gaussian source spectra in optical coherence tomography
,”
Opt. Lett.
27
,
406
(
2002
).
37.
G. K.
Kitaeva
,
V. V.
Kornienko
,
K. A.
Kuznetsov
,
I. V.
Pentin
,
K. V.
Smirnov
, and
Y. B.
Vakhtomin
, “
Direct detection of the idler THz radiation generated by spontaneous parametric down-conversion
,”
Opt. Lett.
44
,
1198
1201
(
2019
).

Supplementary Material

You do not currently have access to this content.