We introduce a kind of acoustic metamaterial, which can greatly enhance the transmission at subwavelength ranges and keep its hyaline and air-proof characteristics simultaneously. In contrast to the state of the art, this originally conceived passive metamaterial makes full use of the resonance of glass plates without any complex or expensive materials. We provide the design of the decorated window, numerical simulation, and experimental demonstrations for this kind of metamaterial and analyze the underlying physical mechanism. Furthermore, we show that more transmission peaks can be realized by introducing multilayer resonance coupling of this decorated window. This meta-window should have many potential applications where both the sound and visible light transmission are required without any ventilation.

1.
B.
Assouar
,
B.
Liang
,
Y.
Wu
,
Y.
Li
,
J.-C.
Cheng
, and
Y.
Jing
, “
Acoustic metasurfaces
,”
Nat. Rev. Mater.
3
(
12
),
460
472
(
2018
).
2.
M. R.
Haberman
and
M. D.
Guild
, “
Acoustic metamaterials
,”
Phys. Today
69
(
6
),
42
48
(
2016
).
3.
H.
Xue
,
Y.
Yang
,
F.
Gao
,
Y.
Chong
, and
B.
Zhang
, “
Acoustic higher-order topological insulator on a kagome lattice
,”
Nat. Mater.
18
(
2
),
108
112
(
2019
).
4.
X.
Ni
,
M.
Weiner
,
A.
Alu
, and
A. B.
Khanikaev
, “
Observation of higher-order topological acoustic states protected by generalized chiral symmetry
,”
Nat. Mater.
18
(
2
),
113
120
(
2019
).
5.
G.
Ma
,
M.
Xiao
, and
C. T.
Chan
, “
Topological phases in acoustic and mechanical systems
,”
Nat. Rev. Phys.
1
(
4
),
281
294
(
2019
).
6.
Y.
Xu
,
Y.
Fu
, and
H.
Chen
, “
Planar gradient metamaterials
,”
Nat. Rev. Mater.
1
(
12
),
1
14
(
2016
).
7.
M.
Yang
and
P.
Sheng
, “
Sound absorption structures: From porous media to acoustic metamaterials
,”
Annu. Rev. Mater. Res.
47
,
83
114
(
2017
).
8.
H.-T.
Chen
,
A. J.
Taylor
, and
N.
Yu
, “
A review of metasurfaces: Physics and applications
,”
Rep. Prog. Phys.
79
(
7
),
076401
(
2016
).
9.
S. B.
Glybovski
,
S. A.
Tretyakov
,
P. A.
Belov
,
Y. S.
Kivshar
, and
C. R.
Simovski
, “
Metasurfaces: From microwaves to visible
,”
Phys. Rep.
634
,
1
72
(
2016
).
10.
S. D.
Huber
, “
Topological mechanics
,”
Nat. Phys.
12
(
7
),
621
(
2016
).
11.
M.-H.
Lu
,
L.
Feng
, and
Y.-F.
Chen
, “
Phononic crystals and acoustic metamaterials
,”
Mater. Today
12
(
12
),
34
42
(
2009
).
12.
H.
Han
,
L. G.
Potyomina
,
A. A.
Darinskii
,
S.
Volz
, and
Y. A.
Kosevich
, “
Phonon interference and thermal conductance reduction in atomic-scale metamaterials
,”
Phys. Rev. B
89
(
18
),
180301
(
2014
).
13.
H.
Han
,
B.
Li
,
S.
Volz
, and
Y. A.
Kosevich
, “
Ultracompact interference phonon nanocapacitor for storage and lasing of coherent terahertz lattice waves
,”
Phys. Rev. Lett.
114
(
14
),
145501
(
2015
).
14.
M.-H.
Lu
,
X.-K.
Liu
,
L.
Feng
,
J.
Li
,
C.-P.
Huang
,
Y.-F.
Chen
,
Y.-Y.
Zhu
,
S.-N.
Zhu
, and
N.-B.
Ming
, “
Extraordinary acoustic transmission through a 1D grating with very narrow apertures
,”
Phys. Rev. Lett.
99
(
17
),
174301
(
2007
).
15.
D.-X.
Qi
,
R.-H.
Fan
,
R.-W.
Peng
,
X.-R.
Huang
,
M.-H.
Lu
,
X.
Ni
,
Q.
Hu
, and
M.
Wang
, “
Multiple-band transmission of acoustic wave through metallic gratings
,”
Appl. Phys. Lett.
101
(
6
),
061912
(
2012
).
16.
R.
Fleury
and
A.
Alù
, “
Extraordinary sound transmission through density-near-zero ultranarrow channels
,”
Phys. Rev. Lett.
111
(
5
),
055501
(
2013
).
17.
C.
Qiu
,
R.
Hao
,
F.
Li
,
S.
Xu
, and
Z.
Liu
, “
Broadband transmission enhancement of acoustic waves through a hybrid grating
,”
Appl. Phys. Lett.
100
(
19
),
191908
(
2012
).
18.
J.
Mei
,
B.
Hou
,
M.
Ke
,
S.
Peng
,
H.
Jia
,
Z.
Liu
,
J.
Shi
,
W.
Wen
, and
P.
Sheng
, “
Acoustic wave transmission through a bull's eye structure
,”
Appl. Phys. Lett.
92
(
12
),
124106
(
2008
).
19.
B.
Hou
,
J.
Mei
,
M.
Ke
,
Z.
Liu
,
J.
Shi
, and
W.
Wen
, “
Experimental determination for resonance-induced transmission of acoustic waves through subwavelength hole arrays
,”
J. Appl. Phys.
104
(
1
),
014909
(
2008
).
20.
H.
Estrada
,
P.
Candelas
,
A.
Uris
,
F.
Belmar
,
F. J.
García De Abajo
, and
F.
Meseguer
, “
Extraordinary sound screening in perforated plates
,”
Phys. Rev. Lett.
101
(
8
),
084302
(
2008
).
21.
H.
Estrada
,
F.
Javier García de Abajo
,
P.
Candelas
,
A.
Uris
,
F.
Belmar
, and
F.
Meseguer
, “
Angle-dependent ultrasonic transmission through plates with subwavelength hole arrays
,”
Phys. Rev. Lett.
102
(
14
),
144301
(
2009
).
22.
S.
Tong
,
C.
Ren
, and
W.
Tang
, “
Broadband extraordinary acoustic transmission via hornlike metamaterials
,”
Appl. Phys. Express
11
(
10
),
107302
(
2018
).
23.
G.
Yu
and
X.
Wang
, “
Extraordinary sound tunneling through a barred horn via subwavelength hole resonance
,”
Appl. Phys. Lett.
99
(
25
),
254101
(
2011
).
24.
Y.
Xie
,
A.
Konneker
,
B.-I.
Popa
, and
S. A.
Cummer
, “
Tapered labyrinthine acoustic metamaterials for broadband impedance matching
,”
Appl. Phys. Lett.
103
(
20
),
201906
(
2013
).
25.
F. C.
Sgard
,
X.
Olny
,
N.
Atalla
, and
F.
Castel
, “
On the use of perforations to improve the sound absorption of porous materials
,”
Appl. Acoust.
66
(
6
),
625
651
(
2005
).
26.
A.
Osipov
,
P.
Mees
, and
G.
Vermeir
, “
Low-frequency airborne sound transmission through single partitions in buildings
,”
Appl. Acoust.
52
(
3–4
),
273
288
(
1997
).
27.
Z.
Yang
,
J.
Mei
,
M.
Yang
,
N. H.
Chan
, and
P.
Sheng
, “
Membrane-type acoustic metamaterial with negative dynamic mass
,”
Phys. Rev. Lett.
101
(
20
),
204301
(
2008
).
28.
M.
Badreddine Assouar
,
M.
Senesi
,
M.
Oudich
,
M.
Ruzzene
, and
Z.
Hou
, “
Broadband plate-type acoustic metamaterial for low-frequency sound attenuation
,”
Appl. Phys. Lett.
101
(
17
),
173505
(
2012
).
29.
W.
Lu
,
C.-G.
Xu
,
S.
Zhang
,
B.-Q.
Xu
, and
W.
Cao
, “
Low-frequency Gibbs-type oscillation in finite solid–fluid sonic crystals and its application in sub-wavelength wave isolation for waterborne sound
,”
J. Phys. D: Appl. Phys.
52
(
50
),
505114
(
2019
).
30.
H. A.
Haus
and
W.
Huang
, “
Coupled-mode theory
,”
Proc. IEEE
79
(
10
),
1505
1518
(
1991
).
31.
D. N.
Maksimov
,
A. F.
Sadreev
,
A. A.
Lyapina
, and
A. S.
Pilipchuk
, “
Coupled mode theory for acoustic resonators
,”
Wave Motion
56
,
52
66
(
2015
).
32.
M.
Bayindir
,
B.
Temelkuran
, and
E.
Ozbay
, “
Tight-binding description of the coupled defect modes in three-dimensional photonic crystals
,”
Phys. Rev. Lett.
84
(
10
),
2140
(
2000
).
33.
H.
Xu
,
Q.
He
,
S.
Xiao
,
B.
Xi
,
J.
Hao
, and
L.
Zhou
, “
Tight-binding analysis of coupling effects in metamaterials
,”
J. Appl. Phys.
109
(
2
),
023103
(
2011
).
34.
V.
Fokin
,
M.
Ambati
,
C.
Sun
, and
X.
Zhang
, “
Method for retrieving effective properties of locally resonant acoustic metamaterials
,”
Phys. Rev. B
76
(
14
),
144302
(
2007
).
35.
P.
Li
,
S.
Yao
,
X.
Zhou
,
G.
Huang
, and
G.
Hu
, “
Effective medium theory of thin-plate acoustic metamaterials
,”
J. Acoust. Soc. Am.
135
(
4
),
1844
1852
(
2014
).
36.
Y.
Xu
,
J. H.
Wu
,
Y.
Cai
, and
F.
Ma
, “
Investigation on dynamic effective parameters of perforated thin-plate acoustic metamaterials
,”
J. Phys. D: Appl. Phys.
52
(
40
),
405301
(
2019
).

Supplementary Material

You do not currently have access to this content.