An internal quantum efficiency (IQE), defined as the electron–hole pair to photon conversion ratio, of ∼10 was obtained for an n-GaAs/p-PbS heterojunction when illuminating the device with short wavelength infrared (SWIR) light in the wavelength range of 1300 nm–1500 nm. The PbS layer, which was comprised of nano-scale domains (NDs) grown by Chemical Bath Deposition (CBD), was quantum confined to absorb SWIR light. The heterojunction showed tunneling characteristics with a soft breakdown at a relatively low reverse bias (∼−1 V) and a strong photoconductive response at a negative bias above −1.8 V. The voltage dependent behavior is explained using the band structure of the heterojunction. The high IQE observed in the photoconductive response at −2 V is attributed to a high photoconductive gain of more than 40. This assumption was confirmed by mixed conduction behavior observed in a magnetic field dependence Hall effect measurement. These measurements enabled extracting concentrations and mobilities of both electrons and holes. It was found that the CBD grown p-type PbS NDs layer has a mixed conduction nature due to the high electron-to-hole mobility ratio of more than one order of magnitude. This explains the high photoconductive gain achieved and, thus, the high IQE measured for these devices.

1.
R. H.
Wilson
,
K. P.
Nadeau
,
F. B.
Jaworski
,
B. J.
Tromberg
, and
A. J.
Durkin
,
J. Biomed. Opt.
20
(
3
),
03091
(
2015
).
2.
H.
Figgemeier
,
M.
Benecke
,
K.
Hofmann
,
R.
Oelmaier
,
A.
Sieck
,
J.
Wendler
, and
J.
Ziegler
,
Proc. SPIE
9070
,
907008
(
2014
).
3.
A. L.
Rankin
,
C. F.
Bergh
,
S. B.
Goldberg
,
P.
Bellutta
,
A.
Huertas
, and
L. H.
Matthies
,
Proc. SPIE
5804
,
343
(
2005
).
4.
A.
Rouvié
,
O.
Huet
,
S.
Hamard
,
J. P.
Truffer
,
M.
Pozzi
,
J.
Decobert
,
E.
Costard
,
M.
Zécri
,
P.
Maillart
,
Y.
Reibel
, and
A.
Pécheur
,
Proc. SPIE
8704
,
870403
(
2013
).
5.
H.
Inada
,
H.
Mori
,
Y.
Nagai
,
Y.
Iguchi
,
T.
Saitoh
,
K.
Fujii
,
T.
Ishizuka
, and
K.
Akita
,
Proc. SPIE
8012
,
801220
(
2011
).
6.
P.
Simon
,
L.
Bahrig
,
I. A.
Baburin
,
P.
Formanek
,
F.
Röder
,
J.
Sickmann
,
S. G.
Hickey
,
A.
Eychmüller
,
H.
Lichte
,
R.
Kniep
, and
E.
Rosseeva
,
Adv. Mater.
26
,
3042
(
2014
).
7.
I.
Moreels
,
K.
Lambert
,
D.
Smeets
,
D. D.
Muynck
,
T.
Nollet
,
J. C.
Martins
,
F.
Vanhaecke
,
A.
Vantomme
,
C.
Delerue
,
G.
Allan
, and
Z.
Hens
,
ACS Nano
3
,
3023
(
2009
).
8.
J. J.
Peterson
and
T. D.
Krauss
,
Nano Lett.
6
,
510
(
2006
).
9.
P. T.
Guerreiro
,
S.
Ten
,
N. F.
Borrelli
,
J.
Butty
,
G. E.
Jabbour
, and
N.
Peyghambarian
,
Appl. Phys. Lett.
71
(
12
),
1595
(
1997
).
10.
R.
Saran
and
R. J.
Curry
,
Nat. Photonics
10
,
81
(
2016
).
11.
G.
Sarusi
,
T.
Templeman
,
E.
Hechster
,
N.
Nissim
,
V.
Vitenberg
,
N.
Maman
,
A.
Tal
,
A.
Solodar
,
G.
Makov
,
I.
Abdulhalim
,
I.
Visoly-Fisher
, and
Y.
Golan
,
Proc. SPIE
9884
,
98840L
(
2016
).
12.
B. L.
Sharma
and
S. N.
Mukerjee
,
Phys. Status Solidi A
2
,
K21
(
1970
).
13.
F.
Bernabucci
,
G.
Margaritondo
,
P.
Migliorato
, and
P.
Perfetti
,
Phys. Status Solidi A
15
,
621
(
1973
).
14.
N.
Arad-Vosk
,
B.
Beach
,
A.
Ron
,
T.
Templeman
,
Y.
Golan
,
G.
Sarusi
, and
A.
Sa'ar
,
Nanotechnology
29
(
11
),
115202
(
2018
).
15.
T.
Templeman
,
M.
Shandalov
,
E.
Yahel
,
V.
Ezersky
,
G.
Sarusi
, and
Y.
Golan
,
RSC Adv.
6
,
88077
(
2016
).
16.
H. M.
Levy
,
R. E.
Abutbul
,
A.
Grossman
,
H.
Peled
,
Y.
Golan
,
N.
Ashkenasy
,
A.
Sa'ar
,
R.
Shikler
, and
G.
Sarusi
,
Nanotechnology
31
(
2020
),
255502
(
2020
).
17.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
NJ
,
2007
).
18.
T. J.
de Lyon
,
B.
Baumgratz
,
G.
Chapman
,
E.
Gordon
,
A. T.
Hunter
,
M.
Jack
,
J. E.
Jensen
,
W.
Johson
,
B.
Johs
,
K.
Kosai
 et al,
J. Cryst. Growth
201–202
,
980
(
1999
).
19.
Y.
Li
,
C. Y.
Xu
,
J. Y.
Wang
, and
L.
Zhen
,
Sci. Rep.
4
,
7186
(
2014
).
20.
F.
Wang
,
Z.
Wang
,
K.
Xu
,
F.
Wang
,
Q.
Wang
,
Y.
Huang
,
L.
Yin
, and
J.
He
,
Nano Lett.
15
,
7558
(
2015
).
21.
D. A.
Neamen
,
Semiconductor Physics and Devices
(
McGraw-Hill
,
New York
,
2003
), p.
633
.
22.
A.
Zemel
,
A.
Sher
, and
D.
Eger
,
J. Appl. Phys.
62
,
1861
(
1987
).
23.
D.
Eger
,
A.
Zemel
,
D.
Mordowicz
, and
A.
Sher
,
Appl. Phys. Lett.
46
,
989
(
1985
).
24.
A. A.
Ramadan
,
R. D.
Gould
, and
A.
Ashour
,
Thin Solid Films
239
,
272
(
1994
).
25.
E. A.
Smith
,
Semiconductors
(
Cambridge University
,
Cambridge
,
1961
), p.
106
.
26.
D. H.
Yeon
,
S. M.
Lee
,
Y. H.
Jo
,
J.
Moon
, and
Y. S.
Cho
,
J. Mater. Chem. A
2
,
20112
(
2014
).
27.
J.
Gao
,
J. M.
Luther
,
O. E.
Semonin
,
R. J.
Ellingson
,
A. J.
Nozik
, and
M. C.
Beard
,
Nano Lett.
11
,
1002
(
2011
).
28.
N. B.
Kotadiya
,
A. J.
Kothari
,
D.
Tiwari
, and
T. K.
Chaudhuri
,
J. Appl. Phys. A
108
,
819
(
2012
).
29.
R. K.
Joshi
,
A.
Kanjilal
, and
H. K.
Sehgal
,
Appl. Surf. Sci.
221
,
43
(
2004
).
30.
H.
Wang
,
T.
Kubo
,
J.
Nakazaki
, and
H.
Segawa
,
ACS Energy Lett.
2
,
2110
(
2017
).
31.
N.
Maman
,
T.
Templeman
,
H. M.
Levi
,
M.
Shandalov
,
V.
Ezersky
,
G.
Sarusi
,
Y.
Golan
, and
I.
Visoly-Fisher
,
Adv. Matter. Interfaces
5
,
1800231
(
2018
).
32.
A.
Walsh
,
J. Phys. Chem. Lett.
1
,
1284
1287
(
2010
).
33.
W. F.
Li
,
C. M.
Fang
,
M.
Dijkstra
, and
M. A.
van Huis
,
J. Phys.: Condens. Matter
27
,
355801
(
2015
).
34.
H. H.
Gröbke
,
Infrared Phys.
30
,
307
(
1990
).
You do not currently have access to this content.