Photodoping as a nonvolatile and reversible method can be used to modify the carrier distribution at the heterojunction interface. Herein, we explore the 2D/3D van der Waals (vdW) graphene/silicon (G/Si) heterostructure in real time by terahertz (THz) emission spectroscopy. Photoinduced doping is introduced by a continuous wave laser, which leads to a screening effect to the built-in electric field at the interface. The resulting decrease in transient photocurrent reduces the THz emission amplitude from the G/Si heterostructure. The photoinduced doping effect suggests a 40% THz intrinsic modulation depth at external reverse bias. This work provides an effective way to actively control the THz emission process from the G/Si interface and paves the way for analyzing the interfacial process under photoinduced doping in vdW heterostructures.

1.
D.
Jariwala
,
T. J.
Marks
, and
M. C.
Hersam
,
Nat. Mater.
16
,
170
(
2017
).
2.
J.
Shim
,
D.-H.
Kang
,
Y.
Kim
,
H.
Kum
,
W.
Kong
,
S.-H.
Bae
,
I.
Almansouri
,
K.
Lee
,
J.-H.
Park
, and
J.
Kim
,
Carbon
133
,
78
(
2018
).
3.
X.
Wan
,
Y.
Xu
,
H.
Guo
,
K.
Shehzad
,
A.
Ali
,
Y.
Liu
,
J.
Yang
,
D.
Dai
,
C.-T.
Lin
,
L.
Liu
,
H.-C.
Cheng
,
F.
Wang
,
X.
Wang
,
H.
Lu
,
W.
Hu
,
X.
Pi
,
Y.
Dan
,
J.
Luo
,
T.
Hasan
,
X.
Duan
,
X.
Li
,
J.
Xu
,
D.
Yang
,
T.
Ren
, and
B.
Yu
,
NPJ 2D Mater. Appl.
1
,
4
(
2017
).
4.
W.-H.
Wang
,
R.-X.
Du
,
X.-T.
Guo
,
J.
Jiang
,
W.-W.
Zhao
,
Z.-H.
Ni
,
X.-R.
Wang
,
Y.-M.
You
, and
Z.-H.
Ni
,
Light
6
,
e17113
(
2017
).
5.
W.
Wang
,
Z.
Yan
,
J.
Zhang
,
J.
Lu
,
H.
Qin
, and
Z.
Ni
,
Optica
5
,
27
(
2018
).
6.
X.
Li
,
H.
Zhu
,
K.
Wang
,
A.
Cao
,
J.
Wei
,
C.
Li
,
Y.
Jia
,
Z.
Li
,
X.
Li
, and
D.
Wu
,
Adv. Mater.
22
,
2743
(
2010
).
7.
K.
Ding
,
X.
Zhang
,
F.
Xia
,
R.
Wang
,
Y.
Kuang
,
S.
Duhm
,
J.
Jie
, and
X.
Zhang
,
J. Mater. Chem. A
5
,
285
(
2017
).
8.
S. K.
Behura
,
C.
Wang
,
Y.
Wen
, and
V.
Berry
,
Nat. Photonics
13
,
312
(
2019
).
9.
Q.
Li
,
Z.
Tian
,
X.
Zhang
,
R.
Singh
,
L.
Du
,
J.
Gu
,
J.
Han
, and
W.
Zhang
,
Nat. Commun.
6
,
7082
(
2015
).
10.
W.
Du
,
Y.
Zhou
,
Z.
Yao
,
Y.
Huang
,
C.
He
,
L.
Zhang
,
Y.
He
,
L.
Zhu
, and
X.
Xu
,
Nanotechnology
30
,
195705
(
2019
).
11.
Y.
Huang
,
Z.
Yao
,
C.
He
,
L.
Zhu
,
L.
Zhang
,
J.
Bai
, and
X.
Xu
,
J. Phys. Condens. Matter
31
,
153001
(
2019
).
12.
Z.
Yao
,
Y.
Huang
,
L.
Zhu
,
P. A.
Obraztsov
,
W.
Du
,
L.
Zhang
, and
X.
Xu
,
Nanoscale
11
,
16614
(
2019
).
13.
Z.
Yao
,
L.
Zhu
,
Y.
Huang
,
L.
Zhang
,
W.
Du
,
Z.
Lei
,
A.
Soni
, and
X.
Xu
,
ACS Appl. Mater. Interfaces
10
,
35599
(
2018
).
14.
M.
Fu
,
X.
Wang
,
S.
Wang
,
Z.
Xie
,
S.
Feng
,
W.
Sun
,
J.
Ye
,
P.
Han
, and
Y.
Zhang
,
Opt. Mater.
66
,
381
(
2017
).
15.
Q.-Y.
Wen
,
W.
Tian
,
Q.
Mao
,
Z.
Chen
,
W.-W.
Liu
,
Q.-H.
Yang
,
M.
Sanderson
, and
H.-W.
Zhang
,
Sci. Rep.
4
,
7409
(
2014
).
16.
A. V.
Muraviev
,
S. L.
Rumyantsev
,
G.
Liu
,
A. A.
Balandin
,
W.
Knap
, and
M. S.
Shur
,
Appl. Phys. Lett.
103
,
181114
(
2013
).
17.
Z.
Yao
,
Y.
Huang
,
W.
Du
,
C.
He
,
L.
Zhu
,
L.
Zhang
, and
X.
Xu
,
IEEE Trans. Terahertz Sci. Technol.
10
,
101
(
2020
).
18.
S.
Chen
,
F.
Fan
,
Y.
Miao
,
X.
He
,
K.
Zhang
, and
S.
Chang
,
Nanoscale
8
,
4713
(
2016
).
19.
J.
Yao
,
J.
Shao
,
Y.
Wang
,
Z.
Zhao
, and
G.
Yang
,
Nanoscale
7
,
12535
(
2015
).
20.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H.
Castro Neto
,
Science
353
,
aac9439
(
2016
).
21.
C. C.
Shen
,
C. T.
Lin
,
L. J.
Li
, and
H. L.
Liu
,
Appl. Phys. Lett.
101
,
111907
(
2012
).
22.
E. O.
Polat
and
C.
Kocabas
,
Nano Lett.
13
,
5851
(
2013
).
23.
G.
Wang
,
B.
Zhang
,
H.
Ji
,
X.
Liu
,
T.
He
,
L.
Lv
,
Y.
Hou
, and
J.
Shen
,
Appl. Phys. Lett.
110
,
023301
(
2017
).
24.
L.
Ju
,
J.
Velasco
,
E.
Huang
,
S.
Kahn
,
C.
Nosiglia
,
H.-Z.
Tsai
,
W.
Yang
,
T.
Taniguchi
,
K.
Watanabe
,
Y.
Zhang
,
G.
Zhang
,
M.
Crommie
,
A.
Zettl
, and
F.
Wang
,
Nat. Nanotechnol.
9
,
348
(
2014
).
25.
P.-H.
Ho
,
C.-H.
Chen
,
F.-Y.
Shih
,
Y.-R.
Chang
,
S.-S.
Li
,
W.-H.
Wang
,
M.-C.
Shih
,
W.-T.
Chen
,
Y.-P.
Chiu
,
M.-K.
Li
,
Y.-S.
Shih
, and
C.-W.
Chen
,
Adv. Mater.
27
,
7809
(
2015
).
26.
P. H.
Ho
,
S. S.
Li
,
Y. T.
Liou
,
C. Y.
Wen
,
Y. H.
Chung
, and
C. W.
Chen
,
Adv. Mater.
27
,
282
(
2015
).
27.
Y.
Huang
,
L.
Zhu
,
Q.
Zhao
,
Y.
Guo
,
Z.
Ren
,
J.
Bai
, and
X.
Xu
,
ACS Appl. Mater. Interfaces
9
,
4956
(
2017
).
28.
J.
Maysonnave
,
S.
Huppert
,
F.
Wang
,
S.
Maero
,
C.
Berger
,
W.
de Heer
,
T. B.
Norris
,
L. A.
De Vaulchier
,
S.
Dhillon
,
J.
Tignon
,
R.
Ferreira
, and
J.
Mangeney
,
Nano Lett.
14
,
5797
(
2014
).
29.
Y.
He
,
R.
Su
,
Y.
Huang
,
Y.
Zhou
,
Q.
Zhao
,
J. B.
Khurgin
,
Q.
Xiong
, and
X.
Xu
,
Adv. Funct. Mater.
29
,
1904694
(
2019
).
30.
J. N.
Heyman
,
N.
Coates
,
A.
Reinhardt
, and
G.
Strasser
,
Appl. Phys. Lett.
83
,
5476
(
2003
).
31.
M.
Qi
,
Y.
Zhou
,
F.
Hu
,
X.
Xu
,
W.
Li
,
A.
Li
,
J.
Bai
, and
Z.
Ren
,
J. Phys. Chem. C
118
,
15054
(
2014
).
32.
Y.
Zhang
,
Y.
Chen
,
S.
Xu
,
H.
Lian
,
M.
Wang
,
W.
Liu
,
S. L.
Chin
, and
G.
Mu
,
Opt. Lett.
34
,
2841
(
2009
).
33.
G. K.
Kitaeva
,
Laser Phys. Lett.
5
,
559
(
2008
).
34.
S. L.
Chuang
,
S.
Schmitt-Rink
,
B. I.
Greene
,
P. N.
Saeta
, and
A. F. J.
Levi
,
Phys. Rev. Lett.
68
,
102
(
1992
).
35.
R. W.
Boyd
, “
Chapter 1: The nonlinear optical susceptibility
,” in
Nonlinear Optics
, 3rd ed., edited by
R. W.
Boyd
(
Academic Press
,
Burlington
,
2008
), p.
1
.
36.
M.
Reid
and
R.
Fedosejevs
,
Appl. Phys. Lett.
86
,
011906
(
2005
).
37.
X. C.
Zhang
and
D.
Auston
,
J. Appl. Phys.
71
,
326
(
1992
).
38.
P.
Weis
,
J. L.
Garcia-Pomar
,
M.
Höh
,
B.
Reinhard
,
A.
Brodyanski
, and
M.
Rahm
,
ACS Nano
6
,
9118
(
2012
).

Supplementary Material

You do not currently have access to this content.