The directional movement of an aqueous solution containing gold nanoparticles under laser irradiation (532 nm) through the vicinity of an air/water interface is reported. It is shown that unidirectional flow is generated along the path of light-travel when a laser is irradiated parallel to the interface. On the contrary, liquid flow toward the light source is caused when the incident angle of the laser is tuned so as to make the total reflection at an air/water interface. Such switching of the flow direction, positive or negative to the light propagation, was applied to the movement of mm-sized floating object, revealing that repetitive back and forth motion of the solid object is generated. This directional switching of photo-induced movement is interpreted by taking into account the flow caused by the spatial gradient of the surface tension due to the thermal effect of the incident laser. A numerical model with a Navier–Stokes-type equation reproduces the essential aspects of the switching of the direction observed in the present study.

1.
A.
Ashkin
,
Phys. Rev. Lett.
24
,
156
159
(
1970
).
2.
S. N.
Watanabe
,
T.
Iwaki
,
M. I.
Kohira
,
N.
Magome
, and
K.
Yoshikawa
,
Chem. Phys. Lett.
511
,
447
451
(
2011
).
3.
P.
Zemánek
,
G.
Volpe
,
A.
Jonáš
, and
O.
Brzobohatý
,
Adv. Opt. Photonics
11
,
577
678
(
2019
).
4.
T.
Zhu
,
Y.
Cao
,
L.
Wang
,
Z.
Nie
,
T.
Cao
,
F.
Sun
,
Z.
Jiang
,
M.
Nieto-Vesperinas
,
Y.
Liu
, and
C.-W.
Qiu
,
Phys. Rev. Lett.
120
,
123901
(
2018
).
5.
W.
Ding
,
T.
Zhu
,
L.-M.
Zhou
, and
C.-W.
Qiu
,
Adv. Photonics
1
,
024001
(
2019
).
6.
D.
Feldmann
,
S.
Maduar
,
M.
Santer
,
N.
Lomadze
,
O.
Vinogradova
, and
S.
Santer
,
Sci. Rep.
6
,
36443
(
2016
).
7.
N.
Kavokine
,
M.
Anyfantakis
,
M.
Morel
,
S.
Rudiuk
,
T.
Bickel
, and
D.
Baigl
,
Angew. Chem., Int. Ed.
55
,
11183
11187
(
2016
).
8.
D.
Feldmann
,
P.
Arya
,
N.
Lomadze
,
A.
Kopyshev
, and
S.
Santer
,
Appl. Phys. Lett.
115
,
263701
(
2019
).
9.
P.
Arya
,
D.
Feldmann
,
A.
Kopyshev
,
N.
Lomadze
, and
S.
Santer
,
Soft Matter
16
,
1148
1155
(
2020
).
10.
K.
Sasaki
,
M.
Koshioka
,
H.
Misawa
,
N.
Kitamura
, and
H.
Masuhara
,
Appl. Phys. Lett.
60
,
807
809
(
1992
).
11.
C.
Lv
,
S. N.
Varanakkottu
,
T.
Baier
, and
S.
Hardt
,
Nano Lett.
18
,
6924
6930
(
2018
).
12.
D.
Dattler
,
G.
Fuks
,
J.
Heiser
,
E.
Moulin
,
A.
Perrot
,
X.
Yao
, and
N.
Giuseppone
,
Chem. Rev.
120
,
310
433
(
2020
).
13.
J.
Wang
,
Z.
Xiong
,
J.
Zheng
,
X.
Zhan
, and
J.
Tang
,
Acc. Chem. Res.
51
,
1957
1965
(
2018
).
14.
Y.
Xiao
,
S.
Zarghami
,
K.
Wagner
,
P.
Wagner
,
K. C.
Gordon
,
L.
Florea
,
D.
Diamond
, and
D. L.
Officer
,
Adv. Mater.
30
,
1801821
(
2018
).
15.
D.
Zhang
,
Y.
Sun
,
M.
Li
,
H.
Zhang
,
B.
Song
, and
B.
Dong
,
J. Mater. Chem. C
6
,
12234
12239
(
2018
).
16.
Y.
Yuan
,
G. N.
Abuhaimed
,
Q.
Liu
, and
I. I.
Smalyukh
,
Nat. Commun.
9
,
5040
(
2018
).
17.
S.
Ikejiri
,
Y.
Takashima
,
M.
Osaki
,
H.
Yamaguchi
, and
A.
Harada
,
J. Am. Chem. Soc.
140
,
17308
17315
(
2018
).
18.
H.
Li
,
Y.
Cao
,
L.-M.
Zhou
,
X.
Xu
,
T.
Zhu
,
Y.
Shi
,
C.-W.
Qiu
, and
W.
Ding
,
Adv. Opt. Photonics
12
,
288
(
2020
).
19.
S.
Rybalko
,
N.
Magome
, and
K.
Yoshikawa
,
Phys. Rev. E
70
,
046301
(
2004
).
20.
M.
Ichikawa
,
F.
Takabatake
,
K.
Miura
,
T.
Iwaki
,
N.
Magome
, and
K.
Yoshikawa
,
Phys. Rev. E
88
,
012403
(
2013
).
21.
E. F.
Greco
and
R. O.
Grigoriev
,
Phys. Fluids
21
,
042105
(
2009
).
22.
G. J.
Amador
,
Z.
Ren
,
A. F.
Tabak
,
Y.
Alapan
,
O.
Yasa
, and
M.
Sitti
,
Small
15
,
1900472
(
2019
).
23.
F.
Takabatake
,
K.
Yoshikawa
, and
M.
Ichikawa
,
J. Chem. Phys.
141
,
051103
(
2014
).
24.
A. Y.
Malyuk
and
N. A.
Ivanova
,
Appl. Phys. Lett.
112
,
103701
(
2018
).
25.
E.
Vela
,
M.
Hafez
, and
S.
Régnier
,
Int. J. Opt.
3
,
289
302
(
2009
).
26.
J. P.
Singer
,
S. E.
Kooi
, and
E. L.
Thomas
,
J. Polym. Sci., Part B
54
,
225
236
(
2016
).
27.
M.
Gugliotti
,
M. S.
Baptista
, and
M. J.
Politi
,
Langmuir
18
,
9792
9798
(
2002
).
28.
A.
Miniewicz
,
S.
Bartkiewicz
,
H.
Orlikowska
, and
K.
Dradrach
,
Sci. Rep.
6
,
34787
(
2016
).
29.
A.
Miniewicz
,
C.
Quintard
,
H.
Orlikowska
, and
S.
Bartkiewicz
,
Phys. Chem. Chem. Phys.
19
,
18695
18703
(
2017
).
30.
M. M.
Pariona
,
A. F.
Taques
, and
L. A.
Woiciechowski
,
Int. J. Heat Mass Transfer
119
,
10
19
(
2018
).
31.
J.-M.
Drezet
,
S.
Pellerin
,
C.
Bezençon
, and
S.
Mokadem
,
J. Phys. IV France
120
,
299
306
(
2004
).
32.
Y.
Harada
,
K.
Koyoshi
,
H.
Sakuta
,
K.
Sadakane
,
T.
Kenmotsu
, and
K.
Yoshikawa
,
J. Phys. Chem. C
122
,
2747
2752
(
2018
).
33.
H.
Sakuta
,
S.
Seo
,
S.
Kimura
,
M.
Hörning
,
K.
Sadakane
,
T.
Kenmotsu
,
M.
Tanaka
, and
K.
Yoshikawa
,
J. Phys. Chem. Lett.
9
,
5792
5796
(
2018
).
34.
Y.
Jiang
,
Y.
Cheng
,
X.
Zhang
,
J.
Yang
,
X.
Yang
, and
Z.
Cheng
,
Optik
203
,
164044
(
2020
).
35.
A.
Karbalaei
,
R.
Kumar
, and
H. J.
Cho
,
Micromachines
7
,
13
(
2016
).
36.
K.
Setoura
,
S.
Ito
, and
H.
Miyasaka
,
Nanoscale
9
,
719
730
(
2017
).
37.
J. G.
Ortega-Mendoza
,
J. A.
Sarabia-Alonso
,
P.
Zaca-Moran
,
A.
Padilla-Vivanco
,
C.
Toxqui-Quitl
,
I.
Rivas-Cambero
,
J.
Ramirez-Ramirez
,
S. A.
Torres-Hurtado
, and
R.
Ramos-Garcia
,
Opt. Express
26
,
6653
6662
(
2018
).
38.
P.
Lee
and
D.
Meisel
,
J. Phys. Chem.
86
,
3391
3395
(
1982
).
39.
D.
Ghosh
and
N.
Chattopadhyay
,
J. Opt. Photonics
03
,
18
26
(
2013
).
40.
X.
Liu
,
M.
Atwater
,
J.
Wang
, and
Q.
Huo
,
Colloids Surf., B
58
,
3
7
(
2007
).
41.
L.
Scriven
and
C.
Sternling
,
Nature
187
,
186
188
(
1960
).
42.
S. H.
Davis
,
Annu. Rev. Fluid Mech.
19
,
403
435
(
1987
).
43.
M. F.
Schatz
and
G. P.
Neitzel
,
Annu. Rev. Fluid Mech.
33
,
93
127
(
2001
).
44.
P. W.
Atkins
and
J.
De Paula
,
Physical Chemistry
, 8th ed. (
Oxford University Press
,
Oxford, New York
,
2006
), p.
644
.

Supplementary Material

You do not currently have access to this content.