Constructing two-dimensional (2D) van der Waals (vdW) heterostructures is becoming a promising way for photocatalytic water splitting to produce hydrogen. In this Letter, we perform a 2D vdW blue phosphorous/β-AsP (BP/β-AsP) heterostructure based on density functional theory calculations. The type II band alignment in the BP/β-AsP vdW heterostructure is beneficial for separating the photogenerated electrons and holes and suppressing their recombination. The BP/β-AsP heterostructure not only keeps a suitable band edge position for the water splitting reaction but also significantly improves the optical absorption in the visible and ultraviolet light region. Appropriate uniaxial strain can change the indirect bandgap of the BP/β-AsP heterostructure into a direct one. The present findings indicate that the BP/β-AsP heterostructure is a promising candidate for applications in photovoltaic devices and photocatalysis.

1.
H. B.
Gray
,
Nat. Chem.
1
,
7
(
2009
).
2.
W.
Lubitz
and
W.
Tumas
,
Chem. Rev.
107
,
3900
3903
(
2007
).
3.
J.
Liu
,
Y.
Liu
,
N.
Liu
,
Y.
Han
,
X.
Zhang
,
H.
Huang
,
Y.
Lifshitz
,
S. T.
Lee
,
J.
Zhong
, and
Z.
Kang
,
Science
347
,
970
(
2015
).
4.
F.
Gao
,
G. L.
Zhao
,
S.
Yang
, and
J. J.
Spivey
,
J. Am. Chem. Soc.
135
,
3315
3318
(
2013
).
5.
K. S.
Novoselov
,
A. K.
Geim
, and
S. V.
Morozov
,
Science
306
,
666
(
2004
).
6.
L.
Jiang
,
X.
Yuan
,
G.
Zeng
,
Z.
Wu
,
J.
Liang
,
X.
Chen
,
L.
Leng
,
H.
Wang
, and
H.
Wang
,
Appl. Catal. B
221
,
715
725
(
2018
).
7.
J.
Ran
,
B.
Zhu
, and
S. Z.
Qiao
,
Angew. Chem., Int. Ed.
56
,
10373
10377
(
2017
).
8.
H. O. H.
Churchill
and
P.
Jarillo-Herrero
,
Nat. Nanotechnol.
9
,
330
331
(
2014
).
9.
Y.
Li
,
Z.
Zhou
,
S.
Zhang
, and
Z.
Chen
,
J. Am. Chem. Soc.
130
,
16739
16744
(
2008
).
10.
E.
Liu
,
H.
Zhu
,
J.
Yi
,
K.
Kobbekaduwa
,
P.
Adhikari
,
J.
Liu
,
Y.
Shi
,
J.
Zhang
,
H.
Li
,
A.
Oprisan
,
A. M.
Rao
,
H.
Sanabria
,
O.
Chen
, and
J.
Gao
,
ACS Appl. Mater. Interfaces
11
,
48551
48555
(
2019
).
11.
Q.
Lu
,
Y.
Yu
, and
Q.
Ma
,
Adv. Mater.
28
,
1917
1933
(
2016
).
12.
H. Y.
Liu
,
C. L.
Yang
,
M. S.
Wang
, and
X. G.
Ma
,
J. Phys.: Condens. Matter
32
,
055001
(
2020
).
13.
H. Y.
Liu
,
C. L.
Yang
, and
M. S.
Wang
,
Appl. Surf. Sci.
501
,
144263
(
2020
).
14.
B.
Anasori
,
M. R.
Lukatskaya
, and
Y.
Gogotsi
,
Nat. Rev. Mater.
2
,
16098
(
2017
).
15.
Z.
Zhu
and
D.
Tománek
,
Phys. Rev. Lett.
112
,
176802
(
2014
).
16.
J. L.
Zhang
,
S.
Zhao
,
C.
Han
,
Z.
Wang
,
S.
Zhong
,
S.
Sun
,
R.
Guo
,
X.
Zhou
,
C. D.
Gu
,
K. D.
Yuan
,
Z.
Li
, and
W.
Chen
,
Nano Lett.
16
,
4903
4908
(
2016
).
17.
X.
Niu
,
Y.
Li
,
H.
Shu
,
X.
Yao
, and
J.
Wang
,
J. Phys. Chem. C
121
,
3648
3653
(
2017
).
18.
M.
Sun
,
J. P.
Chou
,
J.
Yu
, and
W.
Tang
,
Phys. Chem. Chem. Phys.
19
,
17324
17330
(
2017
).
19.
B. J.
Wang
,
X. H.
Li
,
X. L.
Cai
,
W. Y.
Yu
,
L. W.
Zhang
,
R. Q.
Zhao
, and
S. H.
Ke
,
J. Phys. Chem. C
122
,
7075
7080
(
2018
).
20.
B. J.
Wang
,
X. H.
Li
,
R.
Zhao
,
X. L.
Cai
,
W. Y.
Yu
,
W. B.
Li
,
Z. S.
Liu
,
L. W.
Zhang
, and
S. H.
Ke
,
J. Mater. Chem. A
6
,
8923
8929
(
2018
).
21.
X.
Gao
,
Y.
Shen
,
Y.
Ma
,
S.
Wu
, and
Z.
Zhou
,
Appl. Phys. Lett.
114
,
093902
(
2019
).
22.
Z.
Zhu
,
J.
Guan
, and
D.
Tománek
,
Nano Lett.
15
,
6042
6046
(
2015
).
23.
M.
Xie
,
S.
Zhang
,
B.
Cai
,
Y.
Huang
,
Y.
Zou
,
B.
Guo
,
Y.
Gu
, and
H.
Zeng
,
Nano Energy
28
,
433
(
2016
).
24.
S.
Nahas
,
A.
Bajaj
, and
S.
Bhowmick
,
Phys. Chem. Chem. Phys.
19
,
11282
11288
(
2017
).
25.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
11186
(
1996
).
26.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
17979
(
1994
).
27.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
28.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
8215
(
2003
).
29.
S.
Grimme
,
J.
Antony
, and
S.
Ehrlich
,
J. Chem. Phys.
132
,
154104
(
2010
).
30.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jonsson
,
J. Chem. Phys.
113
,
9901
9904
(
2000
).
31.
X.
Cao
,
X.
Zhang
,
R.
Sinha
,
S.
Tao
, and
A.
Bieberle-Hütter
,
Phys. Chem. Chem. Phys.
21
,
9531
9537
(
2019
).
32.
F.
Hu
,
L.
Tao
, and
H.
Ye
,
J. Mater. Chem. C
7
,
7104
7113
(
2019
).
33.
C.
He
,
J. H.
Zhang
, and
W. X.
Zhang
,
J. Phys. Chem. Lett.
10
,
3122
3128
(
2019
).
34.
Z. Y.
Zhao
,
Z. S.
Li
, and
Z. G.
Zou
,
J. Phys. Chem. C
116
,
7430
7441
(
2012
).
35.
S. A.
Harich
,
D. W. H.
Hwang
, and
X.
Yang
,
J. Chem. Phys.
113
,
10073
10090
(
2000
).
36.
Q. G.
Jiang
,
Z. M.
Ao
, and
Q.
Jiang
,
Phys. Chem. Chem. Phys.
15
,
10859
10865
(
2013
).
37.
J.
Bardeen
and
W.
Shockley
,
Phys. Rev.
80
,
72
(
1950
).
38.
P.
Li
,
W.
Zhang
, and
D.
Li
,
ACS Appl. Mater. Interfaces
10
,
19897
19905
(
2018
).
39.
J.
Dai
and
X. C.
Zeng
,
Angew. Chem., Int. Ed.
54
,
7572
7576
(
2015
).
40.
R.
Kumar
,
D.
Das
, and
A. K.
Singh
,
J. Catal.
359
,
143
150
(
2018
).
41.
H.
Yang
,
J.
Li
,
L.
Yu
,
B.
Huang
,
Y.
Ma
, and
Y.
Dai
,
J. Mater. Chem. A
6
,
4161
4166
(
2018
).
42.
Y.
Aierken
,
D.
Çakır
,
C.
Sevik
, and
F. M.
Peeters
,
Phys. Rev. B
92
,
081408
(
2015
).
43.
L. Z.
Liu
,
X. L.
Wu
,
X. X.
Liu
, and
P. K.
Chu
,
Appl. Surf. Sci.
356
,
626
(
2015
).
You do not currently have access to this content.