Engineering the propagation of water waves is a crucial challenge for potential applications at oceanic scale. Despite their apparent complexity, they do not fundamentally differ from any other kind of physical wave. Similar to recent approaches in optics or acoustics, we propose to artificially manufacture materials at the sub-wavelength scale to modify the propagation characteristics at will. We demonstrate that hydroelastic waves allow for the straightforward control of the medium properties, as well as the quantitative measurement of the full wave field. We investigate propagation in hydroelastic metamaterials made from periodic arrays of tunable resonators. We fully characterize the band structures of such materials, revealing the coexistence of Bragg and hybridization bandgaps. We also introduce a theoretical approach to model this complex system and predict its band structure. These unprecedented experimental and theoretical results reveal the possibility to efficiently control water waves at the laboratory scale.

1.
E.
Callaway
, “
To catch a wave: Ocean wave energy is trying to break into the renewable-energy market, but many challenges remain
,”
Nature
450
,
156
160
(
2007
).
2.
P. A.
Deymier
,
Acoustic Metamaterials and Phononic Crystals
(
Springer Science & Business Media
,
2013
), Vol.
173
.
3.
D. R.
Smith
,
J. B.
Pendry
, and
M. C.
Wiltshire
, “
Metamaterials and negative refractive index
,”
Science
305
,
788
792
(
2004
).
4.
F.
Lemoult
,
G.
Lerosey
,
J.
de Rosny
, and
M.
Fink
, “
Resonant metalenses for breaking the diffraction barrier
,”
Phys. Rev. Lett.
104
,
203901
(
2010
).
5.
X.
Zhang
and
Z.
Liu
, “
Superlenses to overcome the diffraction limit
,”
Nat. Mater.
7
,
435
(
2008
).
6.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
, “
Controlling electromagnetic fields
,”
Science
312
,
1780
1782
(
2006
).
7.
M.
Belzons
,
P.
Devillard
,
F.
Dunlop
,
E.
Guazzelli
,
O.
Parodi
, and
B.
Souillard
, “
Localization of surface waves on a rough bottom: Theories and experiments
,”
Europhys. Lett.
4
,
909
(
1987
).
8.
M.
Belzons
,
V.
Rey
, and
E.
Guazzelli
, “
Subharmonic Bragg resonance for surface water waves
,”
Europhys. Lett.
16
,
189
(
1991
).
9.
M.
Berry
,
R.
Chambers
,
M.
Large
,
C.
Upstill
, and
J.
Walmsley
, “
Wavefront dislocations in the Aharonov-Bohm effect and its water wave analogue
,”
Eur. J. Phys.
1
,
154
(
1980
).
10.
M.
Farhat
,
S.
Enoch
,
S.
Guenneau
, and
A.
Movchan
, “
Broadband cylindrical acoustic cloak for linear surface waves in a fluid
,”
Phys. Rev. Lett.
101
,
134501
(
2008
).
11.
C.
Berraquero
,
A.
Maurel
,
P.
Petitjeans
, and
V.
Pagneux
, “
Experimental realization of a water-wave metamaterial shifter
,”
Phys. Rev. E
88
,
051002
(
2013
).
12.
Z.
Wang
,
P.
Zhang
,
X.
Nie
, and
Y.
Zhang
, “
Focusing of liquid surface waves by gradient index lens
,”
Europhys. Lett.
108
,
24003
(
2014
).
13.
X.
Hu
,
Y.
Shen
,
X.
Liu
,
R.
Fu
,
J.
Zi
,
X.
Jiang
, and
S.
Feng
, “
Band structures and band gaps of liquid surface waves propagating through an infinite array of cylinders
,”
Phys. Rev. E
68
,
037301
(
2003
).
14.
M.
Torres
,
J.
Adrados
,
F. M.
de Espinosa
,
D.
Garcia-Pablos
, and
J.
Fayos
, “
Parametric Bragg resonances in waves on a shallow fluid over a periodically drilled bottom
,”
Phys. Rev. E
63
,
011204
(
2000
).
15.
R. B.
Elandt
,
M.
Shakeri
, and
M.-R.
Alam
, “
Surface gravity-wave lensing
,”
Phys. Rev. E
89
,
023012
(
2014
).
16.
V. A.
Squire
,
J. P.
Dugan
,
P.
Wadhams
,
P. J.
Rottier
, and
A. K.
Liu
, “
Of ocean waves and sea ice
,”
Annu. Rev. Fluid Mech.
27
,
115
168
(
1995
).
17.
V.
Squire
, “
Of ocean waves and sea-ice revisited
,”
Cold Reg. Sci. Technol.
49
,
110
133
(
2007
).
18.
J.
Davys
,
R.
Hosking
, and
A.
Sneyd
, “
Waves due to a steadily moving source on a floating ice plate
,”
J. Fluid Mech.
158
,
269
287
(
1985
).
19.
R. M. S. M.
Schulkes
,
R.
Hosking
, and
A.
Sneyd
, “
Waves due to a steadily moving source on a floating ice plate
.
Part 2
,”
J. Fluid Mech.
180
,
297
318
(
1987
).
20.
L.
Domino
,
M.
Fermigier
,
E.
Fort
, and
A.
Eddi
, “
Dispersion-free control of hydroelastic waves down to sub-wavelength scale
,”
Europhys. Lett.
121
,
14001
(
2018
).
21.
J. D.
Joannopoulos
,
S. G.
Johnson
,
J. N.
Winn
, and
R. D.
Meade
,
Photonic Crystals: Molding the Flow of Light
(
Princeton University Press
,
2011
).
22.
N.
Kaina
,
M.
Fink
, and
G.
Lerosey
, “
Composite media mixing Bragg and local resonances for highly attenuating and broad bandgaps
,”
Sci. Rep.
3
,
3240
(
2013
).
23.
F.
Box
,
D.
Vella
,
R. W.
Style
, and
J. A.
Neufeld
, “
Indentation of a floating elastic sheet: Geometry versus applied tension
,”
Proc. R. Soc. London A
473
,
20170335
(
2017
).
24.
F.
Moisy
,
M.
Rabaud
, and
K.
Salsac
, “
A synthetic schlieren method for the measurement of the topography of a liquid interface
,”
Exp. Fluids
46
,
1021
1036
(
2009
).
25.
S.
Wildeman
, “
Real-time quantitative schlieren imaging by fast Fourier demodulation of a checkered backdrop
,”
Exp. Fluids
59
,
97
(
2018
).
26.
É.
Guyon
,
J.-P.
Hulin
, and
L.
Petit
,
Hydrodynamique Physique 3e Édition (2012)
(
EDP Sciences
,
2012
).
27.
Usually, studying a 1D lattice requires a waveguide. Here, because the objects (the perforation) have a size close to the wavelengths, it is not possible enough to confine our system in one direction to create a waveguide. Instead, we choose to build a 2D lattice but to only probe it in one direction. Its behavior is then similar to that of a 1D lattice with the same properties.
28.
I.
Sersic
,
M.
Frimmer
,
E.
Verhagen
, and
A. F.
Koenderink
, “
Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays
,”
Phys. Rev. Lett.
103
,
213902
(
2009
).
29.
E.
Shamonina
and
L.
Solymar
, “
Magneto-inductive waves supported by metamaterial elements: Components for a one-dimensional waveguide
,”
J. Phys. D
37
,
362
(
2004
).
30.
F.
Lemoult
,
N.
Kaina
,
M.
Fink
, and
G.
Lerosey
, “
Wave propagation control at the deep subwavelength scale in metamaterials
,”
Nat. Phys.
9
,
55
60
(
2013
).
31.
N.
Kaina
, “
Métamatériaux localement résonants: cristaux photoniques et phononiques sub-longueur d'onde
,” Ph.D. thesis (
Université Paris 7
,
2016
).
32.
P.
de Vries
,
D. V.
van Coevorden
, and
A.
Lagendijk
, “
Point scatterers for classical waves
,”
Rev. Mod. Phys.
70
,
447
466
(
1998
).

Supplementary Material

You do not currently have access to this content.