Infrared (IR) imaging is one of the significant tools for the quality control measurements of fabricated samples. Standard IR imaging techniques use direct measurements, where light sources and detectors operate in the IR range. Due to the limited choices of IR light sources or detectors, challenges in reaching specific IR wavelengths may arise. In our work, we perform indirect IR microscopy based on the quantum imaging technique. This method allows us to probe the sample with IR light, while the detection is shifted into the visible or near-IR range. Thus, we demonstrate IR quantum imaging of the silicon chips at different magnifications, wherein a sample is probed at a 1550 nm wavelength, but the detection is performed at 810 nm. We also analyze the possible measurement conditions of the technique and estimate the time needed to perform quality control checks of samples.

1.
M.
Beekes
,
P.
Lasch
, and
D.
Naumann
,
Vet. Microbiol.
123
(
4
),
305
(
2007
).
2.
L. M.
Miller
and
P.
Dumas
,
Curr. Opin. Struct. Biol.
20
(
5
),
649
(
2010
).
3.
M. J.
Baker
,
J.
Trevisan
,
P.
Bassan
,
R.
Bhargava
,
H. J.
Butler
,
K. M.
Dorling
,
P. R.
Fielden
,
S. W.
Fogarty
,
N. J.
Fullwood
,
K. A.
Heys
,
C.
Hughes
,
P.
Lasch
,
P. L.
Martin-Hirsch
,
B.
Obinaju
,
G. D.
Sockalingum
,
J.
Sulé-Suso
,
R. J.
Strong
,
M. J.
Walsh
,
B. R.
Wood
,
P.
Gardner
, and
F. L.
Martin
,
Nat. Protoc.
9
(
8
),
1771
(
2014
).
4.
P.
Bassan
,
J.
Mellor
,
J.
Shapiro
,
K. J.
Williams
,
M. P.
Lisanti
, and
P.
Gardner
,
Anal. Chem.
86
(
3
),
1648
(
2014
).
5.
S.
Rubin
,
F.
Bonnier
,
C.
Sandt
,
L.
Ventéo
,
M.
Pluot
,
B.
Baehrel
,
M.
Manfait
, and
G. D.
Sockalingum
,
Biopolymers
89
(
2
),
160
(
2008
).
6.
O.
Khatib
,
H. A.
Bechtel
,
M. C.
Martin
,
M. B.
Raschke
, and
G. L.
Carr
,
ACS Photonics
5
(
7
),
2773
(
2018
).
7.
S. A. M.
Tofail
,
A.
Mani
,
J.
Bauer
, and
C.
Silien
,
Adv. Eng. Mater.
20
(
6
),
1800061
(
2018
).
8.
M. C.
Martin
,
C.
Dabat-Blondeau
,
M.
Unger
,
J.
Sedlmair
,
D. Y.
Parkinson
,
H. A.
Bechtel
,
B.
Illman
,
J. M.
Castro
,
M.
Keiluweit
,
D.
Buschke
,
B.
Ogle
,
M. J.
Nasse
, and
C. J.
Hirschmugl
,
Nat. Methods
10
(
9
),
861
(
2013
).
9.
M. V.
Chekhova
and
Z. Y.
Ou
,
Adv. Opt. Photonics
8
(
1
),
104
(
2016
).
10.
X. Y.
Zou
,
L. J.
Wang
, and
L.
Mandel
,
Phys. Rev. Lett.
67
(
3
),
318
(
1991
).
11.
L. J.
Wang
,
X. Y.
Zou
, and
L.
Mandel
,
Phys. Rev. A
44
(
7
),
4614
(
1991
).
12.
G. B.
Lemos
,
V.
Borish
,
G. D.
Cole
,
S.
Ramelow
,
R.
Lapkiewicz
, and
A.
Zeilinger
,
Nature
512
(
7515
),
409
(
2014
).
13.
A. V.
Paterova
,
S. M.
Maniam
,
H. Z.
Yang
,
G.
Grenci
, and
L. A.
Krivitsky
, preprint arXiv:2002.05956 (
2020
).
14.
I.
Kviatkovsky
,
H. M.
Chrzanowski
,
E. G.
Avery
,
H.
Bartolomaeus
, and
S.
Ramelow
, preprint arXiv:2002.05960 (
2020
).
15.
C.
Lindner
,
S.
Wolf
,
J.
Kiessling
, and
F.
Kühnemann
,
Opt. Express
28
(
4
),
4426
(
2020
).
16.
D. A.
Kalashnikov
,
A. V.
Paterova
,
S. P.
Kulik
, and
L. A.
Krivitsky
,
Nat. Photonics
10
(
2
),
98
(
2016
).
17.
A.
Paterova
,
S.
Lung
,
D. A.
Kalashnikov
, and
L. A.
Krivitsky
,
Sci. Rep.
7
(
1
),
42608
(
2017
).
18.
S. P.
Kulik
,
G. A.
Maslennikov
,
S. P.
Merkulova
,
A. N.
Penin
,
L. K.
Radchenko
, and
V. N.
Krasheninnikov
,
J. Exp. Theor. Phys.
98
(
1
),
31
(
2004
).
19.
A.
Paterova
,
H. Z.
Yang
,
C. W.
An
,
D.
Kalashnikov
, and
L.
Krivitsky
,
New J. Phys.
20
(
4
),
043015
(
2018
).
20.
A. V.
Paterova
and
L. A.
Krivitsky
,
Light Sci. Appl.
9
,
82
(
2020
).
21.
M.
Kutas
,
B.
Haase
,
P.
Bickert
,
F.
Riexinger
,
D.
Molter
, and
G.
von Freymann
,
Sci. Adv.
6
,
eaaz8065
(
2020
).
22.
A.
Vallés
,
G.
Jiménez
,
L. J.
Salazar-Serrano
, and
J. P.
Torres
,
Phys. Rev. A
97
(
2
),
023824
(
2018
).
23.
A. V.
Paterova
,
H. Z.
Yang
,
C. W.
An
,
D. A.
Kalashnikov
, and
L. A.
Krivitsky
,
Quantum Sci. Technol.
3
(
2
),
025008
(
2018
).
24.
A.
Paterova
,
H. Z.
Yang
,
C. W.
An
,
D.
Kalashnikov
, and
L.
Krivitsky
,
Opt. Express
27
(
3
),
2589
(
2019
).
25.
M.
Lahiri
,
R.
Lapkiewicz
,
G. B.
Lemos
, and
A.
Zeilinger
,
Phys. Rev. A
92
(
1
),
013832
(
2015
).
26.
S. M.
Mansfield
and
G. S.
Kino
,
Appl. Phys. Lett.
57
(
24
),
2615
(
1990
).
27.
E. J.
Candes
and
M. B.
Wakin
,
IEEE Signal Process. Mag.
25
(
2
),
21
(
2008
).
28.
G.
Frascella
,
E. E.
Mikhailov
,
N.
Takanashi
,
R. V.
Zakharov
,
O. V.
Tikhonova
, and
M. V.
Chekhova
,
Optica
6
,
1233
(
2019
).
29.
A.
Heuer
,
R.
Menzel
, and
P. W.
Milonni
,
Phys. Rev. A
92
,
033834
(
2015
).

Supplementary Material

You do not currently have access to this content.