Chip-scale atomic devices built around micro-fabricated alkali vapor cells are at the forefront of compact metrology and atomic sensors. We demonstrate a micro-fabricated vapor cell that is actively pumped to ultra-high-vacuum (UHV) to achieve laser cooling. A grating magneto-optical trap (GMOT) is incorporated with a 4 mm-thick Si/glass vacuum cell to demonstrate the feasibility of a fully miniaturized laser cooling platform. A two-step optical excitation process in rubidium is used to overcome surface-scatter limitations to the GMOT imaging. The unambiguous miniaturization and form-customizability made available with micro-fabricated UHV cells provide a promising platform for future compact cold-atom sensors.

1.
N.
Hinkley
,
J. A.
Sherman
,
N. B.
Phillips
,
M.
Schioppo
,
N. D.
Lemke
,
K.
Beloy
,
M.
Pizzocaro
,
C. W.
Oates
, and
A. D.
Ludlow
, “
An atomic clock with 10−18 instability
,”
Science
341
,
1215
1218
(
2013
).
2.
T.
Kovachy
,
P.
Asenbaum
,
C.
Overstreet
,
C. A.
Donnelly
,
S. M.
Dickerson
,
A.
Sugarbaker
,
J. M.
Hogan
, and
M. A.
Kasevich
, “
Quantum superposition at the half-metre scale
,”
Nature
528
,
530
533
(
2015
).
3.
P.
Laurent
,
P.
Lemonde
,
E.
Simon
,
G.
Santarelli
,
A.
Clairon
,
N.
Dimarcq
,
P.
Petit
,
C.
Audoin
, and
C.
Salomon
, “
A cold atom clock in absence of gravity
,”
Eur. Phys. J. D
3
,
201
204
(
1998
).
4.
K.
Bongs
,
M.
Holynski
,
J.
Vovrosh
,
P.
Bouyer
,
G.
Condon
,
E.
Rasel
,
C.
Schubert
,
W. P.
Schleich
, and
A.
Roura
, “
Taking atom interferometric quantum sensors from the laboratory to real-world applications
,”
Nat. Rev. Phys.
1
,
731
739
(
2019
).
5.
M.
Trupke
,
F.
Ramirez-Martinez
,
E. A.
Curtis
,
J. P.
Ashmore
,
S.
Eriksson
,
E. A.
Hinds
,
Z.
Moktadir
,
C.
Gollasch
,
M.
Kraft
,
G.
Vijaya Prakash
, and
J. J.
Baumberg
, “
Pyramidal micromirrors for microsystems and atom chips
,”
Appl. Phys. Lett.
88
,
071116
(
2006
).
6.
M.
Vangeleyn
,
P. F.
Griffin
,
E.
Riis
, and
A. S.
Arnold
, “
Single-laser, one beam, tetrahedral magneto-optical trap
,”
Opt. Express
17
,
13601
13608
(
2009
).
7.
K. I.
Lee
,
J. A.
Kim
,
H. R.
Noh
, and
W.
Jhe
, “
Single-beam atom trap in a pyramidal and conical hollow mirror
,”
Opt. Express
21
,
1177
1179
(
1996
).
8.
V.
Shah
,
M.
Mescher
,
A.
Martins
,
J.
Leblanc
,
N.
Byrne
,
B.
Timmons
,
R.
Stoner
,
F.
Rogamentich
, and
R.
Lutwak
, “
a miniature cold atom frequency standard
,” in
Proceedings of the 43rd Annual Precise Time and Time Interval Systems and Applications Meeting, Long Beach, California
(
2011
), pp.
221
230
.
9.
J.
Sebby-Strabley
,
C.
Fertig
,
R.
Compton
,
K.
Salit
,
K.
Nelson
,
T.
Stark
,
C.
Langness
, and
R.
Livingston
, “
Design innovations towards miniaturized GPS-quality clocks
,” in
IEEE International Frequency Control Symposium (IFCS)
(
2016
), pp.
1
6
.
10.
E. A.
Salim
,
J.
DeNatale
,
D. M.
Farkas
,
K. M.
Hudek
,
S. E.
McBride
,
J.
Michalchuk
,
R.
Mihailovich
, and
D. Z.
Anderson
, “
Compact, microchip-based systems for practical applications of ultracold atoms
,”
Quantum Inf. Process.
10
,
975
(
2011
).
11.
J.
Reichel
,
W.
Hänsel
, and
T. W.
Hänsch
, “
Atomic micromanipulation with magnetic surface traps
,”
Phys. Rev. Lett.
83
,
3398
3401
(
1999
).
12.
R.
Folman
,
P.
Krüger
,
D.
Cassettari
,
B.
Hessmo
,
T.
Maier
, and
J.
Schmiedmayer
, “
Controlling cold atoms using nanofabricated surfaces: Atom chips
,”
Phys. Rev. Lett.
84
,
4749
4752
(
2000
).
13.
F.
Ramírez-Martínez
,
C.
Lacroûte
,
P.
Rosenbusch
,
F.
Reinhard
,
C.
Deutsch
,
T.
Schneider
, and
J.
Reichel
, “
Compact frequency standard using atoms trapped on a chip
,”
Adv. Space Res.
47
,
247
252
(
2011
).
14.
J. P.
McGilligan
,
P. F.
Griffin
,
R.
Elvin
,
S. J.
Ingleby
,
E.
Riis
, and
A. S.
Arnold
, “
Grating chips for quantum technologies
,”
Sci. Rep.
7
,
1–7
(
2017
).
15.
S.
Kang
,
K. R.
Moore
,
J. P.
McGilligan
,
R.
Mott
,
A.
Mis
,
C.
Roper
,
E. A.
Donley
, and
J.
Kitching
, “
Magneto-optic trap using a reversible, solid-state alkali-metal source
,”
Opt. Lett.
44
,
3002
(
2019
).
16.
J. P.
McGilligan
,
K. R.
Moore
,
S.
Kang
,
R.
Mott
,
A.
Mis
,
C.
Roper
,
E. A.
Donley
, and
J.
Kitching
, “
Dynamic characterization of an alkali-ion battery as a source for laser-cooled atoms
,”
Phys. Rev. Appl.
13
,
044038
(
2020
).
17.
R.
Saint
,
W.
Evans
,
Y.
Zhou
,
T.
Barrett
,
T. M.
Fromhold
,
E.
Saleh
,
I.
Maskery
,
C.
Tuck
,
R.
Wildman
,
F.
Oručević
, and
P.
Krüger
, “
3D-printed components for quantum devices
,”
Sci. Rep.
8
,
1–9
(
2018
).
18.
H.-C.
Chuang
and
C.-S.
Huang
, “
The development of a portable ultrahigh vacuum chamber via silicon block
,”
Rev. Sci. Instrum.
85
,
053107
(
2014
).
19.
S.
Knappe
,
V.
Shah
,
P. D. D.
Schwindt
,
L.
Hollberg
,
J.
Kitching
,
L.-A.
Liew
, and
J.
Moreland
, “
A microfabricated atomic clock
,”
Appl. Phys. Lett.
85
,
1460
1462
(
2004
).
20.
P. D. D.
Schwindt
,
B.
Lindseth
,
S.
Knappe
,
V.
Shah
,
J.
Kitching
, and
L.-A.
Liew
, “
Chip-scale atomic magnetometer with improved sensitivity by use of the mx technique
,”
Appl. Phys. Lett.
90
,
081102
(
2007
).
21.
L.-A.
Liew
,
S.
Knappe
,
J.
Moreland
,
H.
Robinson
,
L.
Hollberg
, and
J.
Kitching
, “
Microfabricated alkali atom vapor cells
,”
Appl. Phys. Lett.
84
,
2694
2696
(
2004
).
22.
J.
Kitching
, “
Chip-scale atomic devices
,”
Appl. Phys. Rev.
5
,
031302
(
2018
).
23.
A. T.
Dellis
,
V.
Shah
,
E. A.
Donley
,
S.
Knappe
, and
J.
Kitching
, “
Low helium permeation cells for atomic microsystems technology
,”
Opt. Lett.
41
,
2775
(
2016
).
24.
H.
Ohadi
,
M.
Himsworth
,
A.
Xuereb
, and
T.
Freegarde
, “
Magneto-optical trapping and background-free imaging for atoms near nanostructured surfaces
,”
Opt. Express
17
,
23003
(
2009
).
25.
D. V.
Sheludko
,
S. C.
Bell
,
R.
Anderson
,
C. S.
Hofmann
,
E. J. D.
Vredenbregt
, and
R. E.
Scholten
, “
State-selective imaging of cold atoms
,”
Phys. Rev. A
77
,
033401
(
2008
).
26.
R.
Chutani
,
V.
Maurice
,
N.
Passilly
,
C.
Gorecki
,
R.
Boudot
,
M.
Abdel-Hafiz
,
P.
Abbé
,
S.
Galliou
,
J.-Y.
Rauch
, and
E.
de Clercq
, “
Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications
,”
Sci. Rep.
5
,
14001
(
2015
).
27.
S.
Shoji
,
H.
Kikuchi
, and
H.
Torigoe
, “
Low-temperature anodic bonding using lithium aluminosilicate-β-quartz glass ceramic
,”
Sens. Actuators, A
64
,
95
100
(
1998
).
28.
P. C. K.
Vesborg
,
J. L.
Olsen
,
T. R.
Henriksen
,
I.
Chorkendorff
, and
O.
Hansen
, “
Note: Anodic bonding with cooling of heat-sensitive areas
,”
Rev. Sci. Instrum.
81
,
016111
(
2010
).
29.
Product name is for technical clarity; does not imply endorsement by NIST.
30.
C. C.
Nshii
,
M.
Vangeleyn
,
J. P.
Cotter
,
P. F.
Griffin
,
E. A.
Hinds
,
C. N.
Ironside
,
P.
See
,
A. G.
Sinclair
,
E.
Riis
, and
A. S.
Arnold
, “
A surface-patterned chip as a strong source of ultracold atoms for quantum technologies
,”
Nat. Nanotechnol.
8
,
321
324
(
2013
).
31.
A. S.
Arnold
,
J. S.
Wilson
, and
M. G.
Boshier
, “
A simple extended-cavity diode laser
,”
Rev. Sci. Instrum.
69
,
1236
1239
(
1998
).
32.
T. T.
Grove
,
V.
Sanchez-Villicana
,
B. C.
Duncan
,
S.
Maleki
, and
P. L.
Gould
, “
Two-photon two-color diode laser spectroscopy of the rb 5d5/2state
,”
Phys. Scr.
52
,
271
276
(
1995
).
33.
J. A.
Rushton
,
M.
Aldous
, and
M. D.
Himsworth
, “
Contributed review: The feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology
,”
Rev. Sci. Instrum.
85
,
121501
(
2014
).
34.
S. A.
Wright
and
Y. B.
Gianchandani
, “
Controlling pressure in microsystem packages by on-chip microdischarges between thin-film titanium electrodes
,”
J. Vac. Sci. Technol., B
25
,
1711
1720
(
2007
).
35.
T.
Grzebyk
,
A.
Górecka-Drzazga
, and
J. A.
Dziuban
, “
Glow-discharge ion-sorption micropump for vacuum MEMS
,”
Sens. Actuators, A
208
,
113
119
(
2014
).
You do not currently have access to this content.