Transition metal dichalcogenides (TMDCs) are promising for future electronic and optoelectronic applications, such as field effect transistors (FETs), for their high carrier mobility with a thin layer, wide bandgap, and organic-like flexibility. However, background doping and unipolar electrical characteristics are commonly observed in TMDCs and their based FETs due to the naturally inevitable vacancy defects, which limit their application in electronics and optoelectronics systems. Here, taking MoS2 as an example, in a TMDC FET, ambipolar properties were achieved at room temperature by introducing an amorphous solid ionic conductor lithium tantalate (LiTaO3) as the gate dielectric, which could guarantee the modulation of the Fermi level in the MoS2 channel by the gate electric field. Based on the modulation mechanisms by the solid ionic conductor-gated electric field for the transformation of conduction mode, the three-terminal device exhibits a gate-controlled rectifying, that is, thyristor performance with a high rectification ratio over 300 obtained at a low gate voltage of 2 V. The present results show the great potential of TMDCs in future logic and other electronic device applications.

1.
K. F.
Mak
and
J.
Shan
, “
Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
,”
Nat. Photonics
10
,
216
(
2016
).
2.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
,
699
(
2012
).
3.
X.
Xu
,
W.
Yao
,
D.
Xiao
, and
T. F.
Heinz
, “
Spin and pseudospins in layered transition metal dichalcogenides
,”
Nat. Phys.
10
,
343
(
2014
).
4.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
, “
Emerging photoluminescence in monolayer MoS2
,”
Nano Lett.
10
,
1271
(
2010
).
5.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
, “
Atomically thin MoS2: A new direct-gap semiconductor
,”
Phys. Rev. Lett.
105
,
136805
(
2010
).
6.
D.
Xiao
,
G.-B.
Liu
,
W.
Feng
,
X.
Xu
, and
W.
Yao
, “
Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides
,”
Phys. Rev. Lett.
108
,
196802
(
2012
).
7.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
, “
Single-layer MoS2 transistors
,”
Nat. Nanotechnol.
6
,
147
(
2011
).
8.
Z.
Yang
,
X.
Liu
,
X.
Zou
,
J.
Wang
,
C.
Ma
,
C.
Jiang
,
J. C.
Ho
,
C.
Pan
,
X.
Xiao
,
J.
Xiong
, and
L.
Liao
, “
Performance limits of the self‐aligned nanowire top-gated MoS2 transistors
,”
Adv. Funct. Mater.
27
,
1602250
(
2017
).
9.
Z.
Cai
,
B.
Liu
,
X.
Zou
, and
H.-M.
Cheng
, “
Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures
,”
Chem. Rev.
118
,
6091
(
2018
).
10.
Y.
Zhang
,
J.
Ye
,
Y.
Matsuhashi
, and
Y.
Iwasa
, “
Ambipolar MoS2 thin flake transistors
,”
Nano Lett.
12
,
1136
(
2012
).
11.
W.
Bao
,
X.
Cai
,
D.
Kim
,
K.
Sridhara
, and
M. S.
Fuhrer
, “
High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects
,”
Appl. Phys. Lett.
102
,
042104
(
2013
).
12.
N.
Kaushik
,
A.
Nipane
,
F.
Basheer
,
S.
Dubey
,
S.
Grover
,
M. M.
Deshmukh
, and
S.
Lodha
, “
Schottky barrier heights for Au and Pd contacts to MoS2
,”
Appl. Phys. Lett.
105
,
113505
(
2014
).
13.
A.
Nipane
,
D.
Karmakar
,
N.
Kaushik
,
S.
Karande
, and
S.
Lodha
, “
Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation
,”
ACS Nano
10
,
2128
(
2016
).
14.
A.
Stesmans
,
S.
Iacovo
, and
V. V.
Afanas'ev
, “
ESR study of p-type natural 2H-polytype MoS2 crystals: The As acceptor activity
,”
Appl. Phys. Lett.
109
,
172104
(
2016
).
15.
W.
Zheng
,
J.
Lin
,
W.
Feng
,
K.
Xiao
,
Y.
Qiu
,
X.
Chen
,
G.
Liu
,
W.
Cao
,
S. T.
Pantelides
,
W.
Zhou
, and
P.
Hu
, “
Patterned growth of P‐type MoS2 atomic layers using sol-gel as precursor
,”
Adv. Funct. Mater.
26
,
6371
(
2016
).
16.
X.
Liu
,
D.
Qu
,
J.
Ryu
,
F.
Ahmed
,
Z.
Yang
,
D.
Lee
, and
W. J.
Yoo
, “
P-type polar transition of chemically doped multilayer MoS2 transistor
,”
Adv. Mater.
28
,
2345
(
2016
).
17.
M. M.
Perera
,
M.-W.
Lin
,
H.-J.
Chuang
,
B. P.
Chamlagain
,
C.
Wang
,
X.
Tan
,
M. M.-C.
Cheng
,
D.
Tománek
, and
Z.
Zhou
, “
Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating
,”
ACS Nano
7
,
4449
(
2013
).
18.
Y. J.
Zhang
,
J. T.
Ye
,
Y.
Yomogida
,
T.
Takenobu
, and
Y.
Iwasa
, “
Formation of a stable p–n junction in a liquid-gated MoS2 ambipolar transistor
,”
Nano Lett.
13
(
7
),
3023
(
2013
).
19.
I.
Zarazua
,
G.
Han
,
P. P.
Boix
,
S.
Mhaisalkar
,
F.
Fabregat-Santiago
,
I.
Mora-Seró
,
J.
Bisquert
, and
G.
Garcia-Belmonte
, “
Surface recombination and collection efficiency in perovskite solar cells from impedance analysis
,”
J. Phys. Chem. Lett.
7
,
5105
(
2016
).
20.
A.
Facchetti
, “
Dielectric materials: Gels excel
,”
Nat. Mater.
7
,
839
(
2008
).
21.
J.
Pu
,
Y.
Yomogida
,
K.-K.
Liu
,
L.-J.
Li
,
Y.
Iwasa
, and
T.
Takenobu
, “
Highly flexible MoS2 thin-film transistors with ion gel dielectrics
,”
Nano Lett.
12
,
4013
(
2012
).
22.
M.
Kawasaki
and
Y.
Iwasa
, “
Electronics: 'Cut and stick' ion gels
,”
Nature
489
,
510
(
2012
).
23.
K. H.
Lee
,
M. S.
Kang
,
S.
Zhang
,
Y.
Gu
,
T. P.
Lodge
, and
C. D.
Frisbie
, “‘
Cut and stick’ rubbery ion gels as high capacitance gate dielectrics
,”
Adv. Mater.
24
,
4457
(
2012
).
24.
H.
Li
,
Q.
Zhang
,
C. C. R.
Yap
,
B. K.
Tay
,
T. H. T.
Edwin
,
A.
Olivier
, and
D.
Baillargeat
, “
From bulk to monolayer MoS2: Evolution of Raman scattering
,”
Adv. Funct. Mater.
22
,
1385
1390
(
2012
).
25.
S. M.
Sze
, “
Physics of semiconductor devices
,”
Phys. Today
23
(
6
),
75
(
1970
).
26.
H.
Shimotani
,
H.
Asanuma
, and
Y.
Iwasa
, “
Electric double layer transistor of organic semiconductor crystals in a four-probe configuration
,”
Jpn. J. Appl. Phys., Part 1
46
,
3613
(
2007
).
27.
D.
Braga
,
M.
Ha
,
W.
Xie
, and
C. D.
Frisbie
, “
Ultralow contact resistance in electrolyte-gated organic thin film transistors
,”
Appl. Phys. Lett.
97
,
193311
(
2010
).
28.
G. W.
Neudeck
,
H. F.
Bare
, and
K. Y.
Chung
, “
Modeling of ambipolar a-Si:H thin-film transistors
,”
IEEE Trans. Electron Devices
34
,
344
(
1987
).
29.
E. J.
Meijer
,
D. M. D.
Leeuw
,
S.
Setayesh
,
E. V.
Veenendaal
,
B. H.
Huisman
,
P. W. M.
Blom
,
J. C.
Hummelen
,
U.
Scherf
, and
T. M.
Klapwijk
, “
Solution-processed ambipolar organic field-effect transistors and inverters
,”
Nat. Mater.
2
,
678
(
2003
).

Supplementary Material

You do not currently have access to this content.