Current-induced magnetization has been investigated in a monoaxial chiral crystal CrNb3S6 by means of superconducting quantum interference device magnetometry. We found that bulk magnetization was generated by applying electric current along the principal axis of the monoaxial chiral crystal and that the magnetization changed linearly with the current. Directly detecting such magnetization enables one to estimate the number of spin-polarized electrons. Using this number, we evaluated the spin polarization rate within the framework of Boltzmann's equation. We also observed that the current-induced magnetization increased in the vicinity of the phase boundary between paramagnetic and forced ferromagnetic phases, which could be attributed to the enhancement of spin fluctuation. We discuss these observations based on a chirality-induced spin selectivity effect enhanced by exchange interactions.

1.
R.
Naaman
and
D. H.
Waldeck
,
J. Phys. Chem. Lett.
3
,
2178
(
2012
).
2.
R.
Naaman
,
Y.
Paltiel
, and
D. H.
Waldeck
,
Nat. Rev. Chem.
3
,
250
(
2019
).
3.
B.
Gohler
,
V.
Hamelbeck
,
T. Z.
Markus
,
M.
Kettner
,
G. F.
Hanne
,
Z.
Vager
,
R.
Naaman
, and
H.
Zacharias
,
Science
331
,
894
(
2011
).
4.
M.
Kettner
,
B.
Gohler
,
H.
Zacharias
,
D.
Mishra
,
V.
Kiran
,
R.
Naaman
,
C.
Fontanesi
,
D. H.
Waldeck
,
S.
Sek
,
J.
Pawlowski
, and
J.
Juhaniewicz
,
J. Phys. Chem. C
119
,
14542
(
2015
).
5.
Z.
Xie
,
T. Z.
Markus
,
S. R.
Cohen
,
Z.
Vager
,
R.
Gutierrez
, and
R.
Naaman
,
Nano Lett.
11
,
4652
(
2011
).
6.
A. C.
Aragones
,
E.
Medina
,
M.
Ferrer-Huerta
,
N.
Gimeno
,
M.
Teixido
,
J. L.
Palma
,
N.
Tao
,
J. M.
Ugalde
,
E.
Giralt
,
I.
Diez-Perez
, and
V.
Mujica
,
Small
13
,
1602519
(
2017
).
7.
M.
Suda
,
Y.
Thathong
,
V.
Promarak
,
H.
Kojima
,
M.
Nakamura
,
T.
Shiraogawa
,
M.
Ehara
, and
H. M.
Yamamoto
,
Nat. Commun.
10
,
2455
(
2019
).
8.
J. M.
Abendroth
,
K. M.
Cheung
,
D. M.
Stemer
,
M. S.
El Hadri
,
C.
Zhao
,
E. E.
Fullerton
, and
P. S.
Weiss
,
J. Am. Chem. Soc.
141
,
3863
(
2019
).
9.
A. M.
Guo
and
Q. F.
Sun
,
Phys. Rev. Lett.
108
,
218102
(
2012
).
10.
A. M.
Guo
and
Q. F.
Sun
,
Proc. Natl. Acad. U. S. A.
111
,
11658
(
2014
).
11.
S.
Matityahu
,
Y.
Utsumi
,
A.
Aharony
,
O.
Entin-Wohlman
, and
C. A.
Balserio
,
Phys. Rev. B
93
,
075407
(
2016
).
12.
X.
Yang
,
C. H.
van der Wal
, and
B. J.
van Wees
,
Phys. Rev. B
99
,
024418
(
2019
).
13.
O. B.
Dor
,
S.
Yochelis
,
S. P.
Mathew
,
R.
Naaman
, and
Y.
Paltiel
,
Nat. Commun.
4
,
2256
(
2013
).
14.
O. B.
Dor
,
S.
Yochelis
,
A.
Radko
,
K.
Vankayala
,
E.
Capua
,
A.
Capua
,
S. H.
Yang
,
L. T.
Baczewski
,
S. S. P.
Parkin
,
R.
Naaman
, and
Y.
Paltiel
,
Nat. Commun.
8
,
14567
(
2017
).
15.
K.
Banerjee-Ghosh
,
O. B.
Dor
,
F.
Tassinari
,
E.
Capua
,
S.
Yochelis
,
A.
Capua
,
S. H.
Yang
,
S. P. P.
Parkin
,
S.
Sarkar
,
L.
Kronik
,
L. T.
Baczewski
,
R.
Naaman
, and
Y.
Paltiel
,
Science
360
,
1331
(
2018
).
16.
F.
Tassinari
,
J.
Steidel
,
S.
Paltiel
,
C.
Fontanesi
,
M.
Lahav
,
Y.
Paltiel
, and
R.
Naaman
,
Chem. Sci.
10
,
5246
(
2019
).
17.
A.
Inui
,
R.
Aoki
,
Y.
Nishiue
,
K.
Shiota
,
Y.
Kousaka
,
H.
Shishido
,
D.
Hirobe
,
M.
Suda
,
J.
Ohe
,
J.
Kishine
,
H. M.
Yamamoto
, and
Y.
Togawa
,
Phys. Rev. Lett.
124
,
166602
(
2020
).
18.
S. O.
Valenzuela
and
M.
Tinkham
,
Nature
442
,
176
(
2006
).
19.
E.
Saitoh
,
M.
Ueda
,
H.
Miyajima
, and
G.
Tatara
,
Appl. Phys. Lett.
88
,
182509
(
2006
).
20.
T.
Kimura
,
Y.
Ohtani
,
T.
Sato
,
S.
Takahashi
, and
S.
Maekawa
,
Phys. Rev. Lett.
98
,
156601
(
2007
).
21.
A.
Soumyanarayanan
,
N.
Reyren
,
A.
Fert
, and
C.
Panagopoulous
,
Nature
539
,
509
(
2016
).
22.
W.
Han
,
Y.
Otani
, and
S.
Maekawa
,
npj Quantum Mater.
3
,
27
(
2018
).
23.
T.
Miyadai
,
K.
Kikuchi
,
H.
Kondo
,
S.
Sakka
,
M.
Arai
, and
Y.
Ishikawa
,
J. Phys. Soc. Jpn.
52
,
1394
(
1983
).
24.
Y.
Togawa
,
T.
Koyama
,
K.
Takayanagi
,
S.
Mori
,
Y.
Kousaka
,
J.
Akimitsu
,
S.
Nishihara
,
K.
Inoue
,
A. S.
Ovchinnikov
, and
J.
Kishine
,
Phys. Rev. Lett.
108
,
107202
(
2012
).
25.
E. M.
Clements
,
R.
Das
,
L.
Lin
,
P. J.
Lampen-Kelley
,
M. H.
Phan
,
V.
Keppens
,
D.
Mandrus
, and
H.
Srikanth
,
Sci. Rep.
7
,
6545
(
2017
).
26.
J.
Yonemura
,
Y.
Shimamoto
,
T.
Kida
,
D.
Yoshizawa
,
Y.
Kousaka
,
S.
Nishihara
,
F. J. T.
Goncalves
,
J.
Akimitsu
,
K.
Inoue
,
M.
Hagiwara
, and
Y.
Togawa
,
Phys. Rev. B
96
,
184423
(
2017
).
27.
Y.
Kousaka
,
Y.
Nakao
,
J.
Kishine
,
M.
Akita
,
K.
Inoue
, and
J.
Akimitsu
,
Nucl. Instrum. Methods Phys. Res., Sect. A
600
,
250
(
2009
).
28.
R.
Aoki
,
Y.
Kousaka
, and
Y.
Togawa
,
Phys. Rev. Lett.
122
,
057206
(
2019
).
29.
S. P.
Mathew
,
P. C.
Mondal
,
H.
Moshe
,
Y.
Mastai
, and
R.
Naaman
,
Appl. Phys. Lett.
105
,
242408
(
2014
).
30.
A. C.
Bornstein
,
B. J.
Chapman
,
N. J.
Ghimire
,
D. G.
Mandrus
,
D. S.
Parker
, and
M.
Lee
,
Phys. Rev. B
91
,
184401
(
2015
).
31.
Y.
Togawa
,
Y.
Kousaka
,
S.
Nishihara
,
K.
Inoue
,
J.
Akimitsu
,
A. S.
Ovchinnikov
, and
J.
Kishine
,
Phys. Rev. Lett.
111
,
197204
(
2013
).
32.

We employed the possible greatest kF = π/c with c=1.21nm (the lattice constant) to calculate δEFπμcE/c. Thus, the upper limit on δEF was 1×1010eV when E=0.086Vcm1 was applied to flow an electric current of 30 mA. According to the relation Nc =DFδEF (DF=15eV1: the density of states per unit cell35), Nc was of the order of 1×109 per unit cell at the greatest.

33.
J.
Fransson
,
J. Phys. Chem. Lett.
10
,
7126
(
2019
).
34.
N.
Sirica
,
P.
Vilmercati
,
F.
Bondino
,
I.
Pis
,
S.
Nappini
,
S.-K.
Mo
,
A. V.
Fedorov
,
P. K.
Das
,
I.
Vobornik
,
J.
Fujii
,
L.
Li
,
D.
Sapkota
,
D. S.
Parker
,
D. G.
Mandrus
, and
N.
Mannella
,
Commun. Phys.
3
,
65
(
2020
).
35.
N. J.
Ghimire
,
M. A.
McGuire
,
D. S.
Parker
,
B.
Sipos
,
S.
Tang
,
J.-Q.
Yan
,
B. C.
Sales
, and
D.
Mandrus
,
Phys. Rev. B
87
,
104403
(
2013
).
36.
T.
Yoda
,
T.
Yokoyama
, and
S.
Murakami
,
Sci. Rep.
5
,
12024
(
2015
).
37.
T.
Furukawa
,
Y.
Shimokawa
,
K.
Kobayashi
, and
T.
Itou
,
Nat. Commun.
8
,
954
(
2017
).
You do not currently have access to this content.