Semiconductors with strong spin–orbit interactions can exhibit a helical gap with spin-momentum locking opened by a magnetic field. Such a gap is highly spin selective as a result of a topologically protected spin-momentum locking, which can be used for spin filtering. We experimentally demonstrate such a spin filtering effect in a quasi-ballistic p-type germanium/silicon core/shell nanowire (NW), which possesses a pseudo-helical gap without the application of magnetic field. Polarized hole spin injection to the NW is achieved using cobalt ferromagnetic contacts with controlled natural surface oxide on the NW as a tunnel barrier. Local and nonlocal spin valve effects are measured as the verification of polarized spin transport in the NW outside the helical gap. We electrically tune the NW into the helical gap by scanning its chemical potential with a gate. A hysteresis loop with three resistance states is observed in the local spin valve geometry, as an evidence of spin filtering in the helical gap.

1.
H.
Yan
,
J.
Xiang
,
W.
Lu
,
Y.
Hu
,
Y.
Wu
, and
C. M.
Lieber
,
Nature
441
(
7092
),
489
(
2006
).
2.
W.
Lu
,
J.
Xiang
,
B. P.
Timko
,
Y.
Wu
, and
C. M.
Lieber
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
10046
(
2005
).
3.
J.
Li
,
N.
Jomaa
,
Y.-M.
Niquet
,
M.
Said
, and
C.
Delerue
,
Appl. Phys. Lett.
105
,
233104
(
2014
).
4.
Y.
Hu
,
F.
Kuemmeth
,
C. M.
Lieber
, and
C. M.
Marcus
,
Nat. Nanotechnol.
7
,
47
(
2012
).
5.
J.
Fischer
and
D.
Loss
,
Phys. Rev. Lett.
105
,
266603
(
2010
).
6.
D.
Brunner
,
B. D.
Gerardot
,
P. A.
Dalgarno
,
G.
Wüst
,
K.
Karrai
,
N. G.
Stoltz
,
P. M.
Petroff
, and
R. J.
Warburton
,
Science
325
,
70
(
2009
).
7.
C.
Kloeffel
,
M.
Trif
, and
D.
Loss
,
Phys. Rev. B
84
(
19
),
195314
(
2011
).
8.
C. H. L.
Quay
,
T. L.
Hughes
,
J. A.
Sulpizio
,
L. N.
Pfeiffer
,
K. W.
Baldwin
,
K. W.
West
,
D.
Goldhaber-Gordon
, and
R.
De Picciotto
,
Nat. Phys.
6
(
5
),
336
(
2010
).
9.
J.
Kammhuber
,
M. C.
Cassidy
,
F.
Pei
,
M. P.
Nowak
,
A.
Vuik
,
Ö.
Gül
,
D.
Car
,
S. R.
Plissard
,
E. P. A. M.
Bakkers
,
M.
Wimmer
, and
L. P.
Kouwenhoven
,
Nat. Commun.
8
,
478
(
2017
).
10.
S.
Heedt
,
N.
Traverso Ziani
,
F.
Crépin
,
W.
Prost
,
S.
Trellenkamp
,
J.
Schubert
,
D.
Grützmacher
,
B.
Trauzettel
, and
T.
Schäpers
,
Nat. Phys.
13
,
563
(
2017
).
11.
J.
Sun
,
R. S.
Deacon
,
R.
Wang
,
J.
Yao
,
C. M.
Lieber
, and
K.
Ishibashi
,
Nano Lett.
18
,
6144
(
2018
).
12.
J.
Liu
,
T. H.
Hsieh
,
P.
Wei
,
W.
Duan
,
J.
Moodera
, and
L.
Fu
,
Nat. Mater.
13
,
178
(
2014
).
13.
S.
Rachel
and
M.
Ezawa
,
Phys. Rev. B
89
,
195303
(
2014
).
14.
J.
Yao
,
H.
Yan
,
S.
Das
,
J. F.
Klemic
,
J. C.
Ellenbogen
, and
C. M.
Lieber
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
2431
(
2014
).
15.
P. J.
Zomer
,
M. H. D.
Guimarães
,
J. C.
Brant
,
N.
Tombros
, and
B. J.
van Wees
,
Appl. Phys. Lett.
105
,
013101
(
2014
).
16.
A.
Castellanos-Gómez
,
M.
Buscema
,
R.
Molenaar
,
V.
Singh
,
L.
Janssen
,
H. S. J.
Zant
, and
G.
Ander Steele
,
2D Mater.
1
,
011002
(
2014
).
17.
R.
Wang
,
R. S.
Deacon
,
D.
Car
,
E. P. a M.
Bakkers
, and
K.
Ishibashi
,
Appl. Phys. Lett.
108
,
203502
(
2016
).
18.
G.
Schmidt
,
D.
Ferrand
,
L. W.
Molenkamp
,
A. T.
Filip
, and
B. J.
van Wees
,
Phys. Rev. B
62
,
R4790
(
2000
).
19.
J.
Tang
and
K. L.
Wang
,
Nanoscale
7
,
4325
(
2015
).
20.
S.
Zhang
,
S. A.
Dayeh
,
Y.
Li
,
S. A.
Crooker
,
D. L.
Smith
, and
S. T.
Picraux
,
Nano Lett.
13
,
430
(
2013
).
21.
S.
Li
,
N.
Kang
,
D. X.
Fan
,
L. B.
Wang
,
Y. Q.
Huang
,
P.
Caroff
, and
H. Q.
Xu
,
Sci. Rep.
6
,
24822
(
2016
).
22.
D.
Rainis
and
D.
Loss
,
Phys. Rev. B
90
,
235415
(
2014
).
23.
H.
Idzuchi
,
Y.
Fukuma
, and
Y.
Otani
,
Physica E
68
,
239
(
2015
).
24.
Z.
Yang
,
B.
Heischmidt
,
S.
Gazibegovic
,
G.
Badawy
,
D.
Car
,
P. A.
Crowell
,
E. P. A. M.
Bakkers
, and
V. S.
Pribiag
,
Nano Lett.
20
,
3232
(
2020
).

Supplementary Material

You do not currently have access to this content.