The compressed ultrafast photography (CUP) method is used to observe ultrafast light emission phenomena by restoring multiple images from a single observed image via a compressed sensing algorithm. However, because its regularization function is only suitable for ultrafast light emissions with lattice contours, the CUP method frequently produces artifacts in the restoration result. To solve this problem, we propose a restoration method that is suitable for ultrafast light emissions with any contour shapes. Specifically, we derive a regularization function that automatically estimates the contours of the ultrafast light emissions. Furthermore, we correct the movement of the ultrafast light emissions. By solving the inverse problem with the derived regularization function, accurate restoration results without artifacts can be obtained. Simulations using datasets that emulate fundamental phenomena show that the proposed method is superior to the conventional CUP method in terms of visual quality and the correlation with the original image.

1.
K.
Shigemori
,
Y.
Hironaka
,
H.
Nagatomo
,
S.
Fujioka
,
A.
Sunahara
,
T.
Kadono
,
H.
Azechi
, and
K.
Shimizu
, “
Extremely high-pressure generation and compression with laser implosion plasmas
,”
Appl. Phys. Lett.
102
,
183501
(
2013
).
2.
M.
Koga
,
T.
Fujiwara
,
T.
Sakaiya
,
M.
Lee
,
K.
Shigemori
,
H.
Shiraga
, and
H.
Azechi
, “
Measurement of heating laser injection time to imploded core plasma by using x-ray framing camera
,”
Rev. Sci. Instrum.
79
,
10E909
(
2008
).
3.
J.
Zhong
,
H.
Shiraga
, and
H.
Azechi
, “
One-dimensional and multichannels multi-imaging x-ray streak camera for imploded core plasma of shell-cone target
,”
Rev. Sci. Instrum.
79
,
10E907
(
2008
).
4.
H.
Shiraga
,
M.
Nakasuji
,
M.
Heya
, and
N.
Miyanaga
, “
Two-dimensional sampling-image x-ray streak camera for ultrafast imaging of inertial confinement fusion plasmas
,”
Rev. Sci. Instrum.
70
,
620
623
(
1999
).
5.
T. Y.
Choi
and
C. P.
Grigoropoulos
, “
Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon
,”
J. Appl. Phys.
92
,
4918
4925
(
2002
).
6.
D.
Pacella
,
G.
Pizzicaroli
,
L.
Gabellieri
,
M.
Leigheb
,
R.
Bellazzini
,
A.
Brez
,
G.
Gariano
,
L.
Latronico
,
N.
Lumb
,
G.
Spandre
,
M. M.
Massai
, and
S.
Reale
, “
Ultrafast soft x-ray two-dimensional plasma imaging system based on gas electron multiplier detector with pixel readout
,”
Rev. Sci. Instrum.
72
,
1372
1378
(
2001
).
7.
S. J.
Henley
,
J. D.
Carey
,
S. R. P.
Silva
,
G. M.
Fuge
,
M. N. R.
Ashfold
, and
D.
Anglos
, “
Dynamics of confined plumes during short and ultrashort pulsed laser ablation of graphite
,”
Phys. Rev. B
72
,
205413
(
2005
).
8.
K. F.
Al-Shboul
,
S. S.
Harilal
, and
A.
Hassanein
, “
Spatio-temporal mapping of ablated species in ultrafast laser-produced graphite plasmas
,”
Appl. Phys. Lett.
100
,
221106
(
2012
).
9.
H.
Shiraga
, “
Time- and space-resolved spectroscopic imaging diagnostics of laser-produced plasmas imaging diagnostics of laser-produced plasmas with high spatial and temporal resolutions obtained by image-sampling technique
,”
J. Plasma Fusion Res.
79
,
347
354
(
2003
).
10.
Y.
Kondo
,
K.
Takubo
,
H.
Tominaga
,
R.
Hirose
,
N.
Tokuoka
,
Y.
Kawaguchi
,
Y.
Takaie
,
A.
Ozaki
,
S.
Nakaya
,
F.
Yano
, and
T.
Daigen
, “
Development of “hypervision hpv-x” high-speed video camera
,”
Shimadzu Rev.
69
,
285
291
(
2012
).
11.
K.
Nakagawa
,
A.
Iwasaki
,
Y.
Oishi
,
R.
Horisaki
,
A.
Tsukamoto
,
A.
Nakamura
,
K.
Hirosawa
,
H.
Liao
,
T.
Ushida
,
K.
Goda
,
F.
Kannari
, and
I.
Sakuma
, “
Sequentially timed all-optical mapping photography (stamp)
,”
Nat. Photonics
8
,
695
700
(
2014
).
12.
Z.
Li
,
R.
Zgadzaj
,
X.
Wang
,
Y.-Y.
Chang
, and
M. C.
Downer
, “
Single-shot tomographic movies of evolving light-velocity objects
,”
Nat. Commun.
5
,
3085:1
3085:12
(
2014
).
13.
N.
Matlis
,
A.
Axley
, and
W.
Leemans
, “
Single-shot ultrafast tomographic imaging by spectral multiplexing
,”
Nat. Commun.
3
,
1111:1
1111:8
(
2012
).
14.
K.
Goda
,
K.
Tsia
, and
B.
Jalali
, “
Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena
,”
Nature
458
,
1145
1149
(
2009
).
15.
L.
Gao
,
J.
Liang
,
C.
Li
, and
L. V.
Wang
, “
Single-shot compressed ultrafast photography at one hundred billion frames per second
,”
Nature
516
,
74
77
(
2014
).
16.
Texas Instruments Incorporated
, see http://www.ti.com/lit/an/dlpa008b/dlpa008b.pdf for “
Introduction to 12 degree orthogonal digital micromirror devices (DMDs)
” (
2018
).
17.
Hamamatsu Photonics K.K., Systems Division
, see https://www.hamamatsu.com/resources/pdf/sys/SHSS0006E_STREAK.pdf for “
Guide to streak cameras
” (
2008
).
18.
J. M.
Bioucas-Dias
and
M. A.
Figueiredo
, “
A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration
,”
IEEE Trans. Image Process.
16
,
2992
3004
(
2007
).
19.
C.
Yang
,
D.
Qi
,
J.
Liang
,
X.
Wang
,
F.
Cao
,
Y.
He
,
X.
Ouyang
,
B.
Zhu
,
W.
Wen
,
T.
Jia
,
J.
Tian
,
L.
Gao
,
Z.
Sun
,
S.
Zhang
, and
L. V.
Wang
, “
Compressed ultrafast photography by multi-encoding imaging
,”
Laser Phys. Lett.
15
,
116202
(
2018
).
20.
C.
Yang
,
D.
Qi
,
F.
Cao
,
Y.
He
,
X.
Wang
,
W.
Wen
,
J.
Tian
,
T.
Jia
,
Z.
Sun
, and
S.
Zhang
, “
Improving the image reconstruction quality of compressed ultrafast photography via an augmented lagrangian algorithm
,”
J. Opt.
21
,
035703
(
2019
).
21.
L.
Zhu
,
Y.
Chen
,
J.
Liang
,
Q.
Xu
,
L.
Gao
,
C.
Ma
, and
L. V.
Wang
, “
Space-and intensity-constrained reconstruction for compressed ultrafast photography
,”
Optica
3
,
694
697
(
2016
).
22.
C.
Yang
,
D.
Qi
,
X.
Wang
,
F.
Cao
,
Y.
He
,
W.
Wen
,
T.
Jia
,
J.
Tian
,
Z.
Sun
,
L.
Gao
,
S.
Zhang
, and
L. V.
Wang
, “
Optimizing codes for compressed ultrafast photography by the genetic algorithm
,”
Optica
5
,
147
151
(
2018
).
23.
M.
Tsumori
,
S.
Nagai
,
R.
Harakawa
,
T.
Sasaki
, and
M.
Iwahashi
, “
Restoration of minute light emissions observed by streak camera based on N-CUP method
,” in
Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)
(
2019
), pp.
1380
1384
.
24.
H.
Zhang
and
Y.
Wang
, “
Edge adaptive directional total variation
,”
J. Eng.
2013
,
61
62
.
25.
Y.
Yue
,
J.
Yu
,
Y.
Wei
,
X.
Liu
, and
T.
Cui
, “
A improved cosamp algorithm based on correlation coefficient for compressed sensing image reconstruction
,”
J. Comput. Inf. Syst.
9
,
7325
7331
(
2013
).
26.
D. M.
Haynes
,
M. J.
Withford
,
J. M.
Dawes
,
J. S.
Lawrence
, and
R.
Haynes
, “
Relative contributions of scattering, diffraction and modal diffusion to focal ratio degradation in optical fibres
,”
Mon. Not. R. Astron. Soc.
414
,
253
263
(
2011
).

Supplementary Material

You do not currently have access to this content.