Fluorescent digital image correlation (DIC) has been implemented on monocular and binocular fluorescence microscopes for shape and deformation measurements at the microscale and even the nanoscale by tracking fluorescent particles. This technique, however, has not been used with regular optical imaging systems for DIC measurements at the macroscale so far. In this Letter, by combining the photoluminescence nature of fluorescent materials and bandpass filtering imaging, we discover that fluorescent DIC also features some distinct advantages in macroscale characterizations, e.g., specular reflection elimination, high speckle contrast, and the capability to simultaneously observe superficial/internal surfaces of transparent structures. To show these advantages and reveal the potential applications of fluorescent DIC, comparative experiments, including shape, displacement, and deformation measurements, were carried out. Furthermore, some issues accompanied by employing fluorescent imaging in DIC were discussed. This study indicates that upgrading classic DIC to fluorescent DIC can significantly improve its performance, enhance its functions, and expand its applications without introducing additional problems.

1.
B.
Pan
,
K.
Qian
,
H.
Xie
, and
A.
Asundi
, “
Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review
,”
Meas. Sci. Technol.
20
,
062001
(
2009
).
2.
B.
Pan
, “
Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals
,”
Meas. Sci. Technol.
29
,
082001
(
2018
).
3.
P. F.
Luo
,
Y. J.
Chao
,
M. A.
Sutton
, and
W. H.
Peters
, “
Accurate measurement of three-dimensional deformation in deformable and rigid bodies using computer vision
,”
Exp. Mech.
33
,
123
132
(
1993
).
4.
B.
Dong
,
L.
Tian
, and
B.
Pan
, “
Tensile testing of carbon fiber multifilament using an advanced video extensometer assisted by dual-reflector imaging
,”
Measurement
138
,
325
331
(
2019
).
5.
M.
Palanca
,
G.
Tozzi
,
L.
Cristofolini
,
M.
Viceconti
, and
E.
Dall'Ara
, “
3D local measurements of bone strain and displacement: Comparison of three digital volume correlation approaches
,”
J. Biomech. Eng.-Trans. ASME
137
,
071006
(
2015
).
6.
B.
Dong
,
C.
Li
, and
B.
Pan
, “
Ultrasensitive video extensometer using single-camera dual field-of-view telecentric imaging system
,”
Opt. Lett.
44
,
4499
4502
(
2019
).
7.
J.
Banks
,
L. M.
Giovannetti
,
X.
Soubeyran
,
A. M.
Wright
,
S. R.
Turnock
, and
S. W.
Boyd
, “
Assessment of digital image correlation as a method of obtaining deformations of a structure under fluid load
,”
J. Fluid Struct.
58
,
173
187
(
2015
).
8.
B.
Dong
,
F.
Zeng
, and
B.
Pan
, “
Full-frame single-camera stereo digital image correlation using a color camera and a X-cube prism
,”
Sensors
19
,
4726
(
2019
).
9.
Y.
Dong
and
B.
Pan
, “
A review of speckle pattern fabrication and assessment for digital image correlation
,”
Exp. Mech.
57
,
1
21
(
2017
).
10.
Z.
Hu
,
T.
Xu
,
X.
Wang
,
Z.
Xie
,
H.
Luo
,
Y.
He
,
L.
Guo
,
Y.
Li
,
R.
Gan
, and
H.
Lu
, “
Fluorescent digital image correlation techniques in experimental mechanics
,”
Sci. China Technol. Sci.
61
,
21
36
(
2018
).
11.
T. A.
Berfield
,
H. K.
Patel
,
R. G.
Shimmin
,
P. V.
Braun
,
J.
Lambros
, and
N. R.
Sottos
, “
Fluorescent image correlation for nanoscale deformation measurements
,”
Small
2
,
631
635
(
2006
).
12.
T. A.
Berfield
,
J. K.
Patel
,
R. G.
Shimmin
,
P. V.
Braun
,
J.
Lambros
, and
N. R.
Sottos
, “
Micro- and nanoscale deformation measurement of surface and internal planes via digital image correlation
,”
Exp. Mech.
47
,
51
62
(
2007
).
13.
Z.
Hu
,
H.
Luo
,
Y.
Du
, and
H.
Lu
, “
Fluorescent stereo microscopy for 3D surface profilometry and deformation mapping
,”
Opt. Express
21
,
11808
11818
(
2013
).
14.
B. A.
Samuel
,
M. C.
Demirel
, and
A.
Haque
, “
High resolution deformation and damage detection using fluorescent dyes
,”
J. Micromech. Microeng.
17
,
2324
2327
(
2007
).
15.
E. M. C.
Jones
,
M. N.
Silberstein
,
S. R.
White
, and
N. R.
Sottos
, “
In situ measurements of strains in composite battery electrodes during electrochemical cycling
,”
Exp. Mech.
54
,
971
985
(
2014
).
16.
J.
Huang
,
X.
Pan
,
X.
Peng
,
T.
Zhu
,
L.
Qin
,
C.
Xiong
, and
J.
Fang
, “
High-efficiency cell-substrate displacement acquisition via digital image correlation method using basis functions
,”
Opt. Lasers Eng.
48
,
1058
1066
(
2010
).
17.
J.
Huang
,
T.
Zhu
,
L.
Qin
,
X.
Peng
,
C.
Xiong
, and
J.
Fang
, “
Study on mechanical interactions between single cardiac myocyte and elastic substrate
,”
Acta Mech. Solida Sin.
22
,
563
570
(
2009
).
18.
C. D.
McGray
,
S. M.
Stavis
,
J.
Giltinan
,
E.
Eastman
,
S.
Firebaugh
,
J.
Piepmeier
,
J.
Geist
, and
M.
Gaitan
, “
MEMS kinematics by super-resolution fluorescence microscopy
,”
J. Microelectromech. Syst.
22
,
115
123
(
2013
).
19.
W. S.
Lepage
,
S. H.
Daly
, and
J. A.
Shaw
, “
Cross polarization for improved digital image correlation
,”
Exp. Mech.
56
,
969
985
(
2016
).
20.
Z.
Hu
,
T.
Xu
,
H.
Luo
,
R.
Gan
, and
H.
Lu
, “
Measurement of thickness and profile of a transparent material using fluorescent stereo microscopy
,”
Opt. Express
24
,
29822
29830
(
2016
).
21.
B.
Pan
,
Z.
Lu
, and
H.
Xie
, “
Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation
,”
Opt. Lasers Eng.
48
,
469
477
(
2010
).
22.
See https://www.correlatedsolutions.com for information about “optimum subset size.”
23.
F.
Zhong
,
R.
Kumar
, and
C.
Quan
, “
RGB laser speckles based 3D profilometry
,”
Appl. Phys. Lett.
114
,
201104
(
2019
).
You do not currently have access to this content.