It is generally thought that correcting chromatic aberrations in imaging requires multiple surfaces. Here, we show that by allowing the phase in the image plane of a flat lens to be a free parameter, it is possible to correct chromatic aberrations over a large continuous bandwidth with a single diffractive surface. In contrast to conventional lens design, we utilize inverse design, where the phase in the focal plane is treated as a free parameter. This approach attains a phase-only (lossless) pupil function, which can be implemented as a multi-level diffractive flat lens that achieves achromatic focusing and imaging. In particular, we experimentally demonstrate imaging using a single flat lens of diameter > 3 mm and focal length = 5 mm (NA = 0.3, f/1.59) that is achromatic from λ = 450 nm (blue) to 1 μm (NIR). This simultaneous achievement of large size, NA, and broad operating bandwidth has not been demonstrated in a flat lens before. We experimentally characterized the point-spread functions, off-axis aberrations, and broadband imaging performance of the lens.

1.
M.
Born
and
E.
Wolf
,
Principle of Optics
, 7th ed. (
Cambridge University Press
,
Cambridge
,
1999
).
2.
P.
Wang
and
R.
Menon
, “
Computational multi-spectral video imaging
,”
J. Opt. Soc. Am. A
35
(
1
),
189
199
(
2018
).
3.
R.
Menon
,
P.
Rogge
, and
H.-Y.
Tsai
, “
Design of diffractive lenses that generate optical nulls without phase singularities
,”
J. Opt. Soc. Am. A
26
(
2
),
297
(
2009
).
4.
S. R. R.
Pavani
,
M. A.
Thompson
,
J. S.
Biteen
,
S. J.
Lord
,
N.
Liu
,
R. J.
Tweig
,
R.
Piestun
, and
W. E.
Moerner
, “
Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point-spread function
,”
Proc. Natl. Acad. U. S. A.
106
(
9
),
2995
2999
(
2009
).
5.
M.
Khorasaninejad
,
W. T.
Chen
,
A. Y.
Zhu
,
J.
Oh
,
R. C.
Devlin
,
C.
Roques-Carmes
,
I.
Mishra
, and
F.
Capasso
, “
Visible wavelength planar metalenses based on titanium dioxide
,”
IEEE J. Sel. Top. Quantum Electron.
23
(
3
),
4700216
(
2017
).
6.
M.
Meem
,
A.
Majumder
, and
R.
Menon
, “
Multi-plane, multi-band image projection via broadband diffractive optics
,”
Appl. Opt.
59
,
38
44
(
2020
).
7.
N.
Mohammad
,
M.
Meem
,
X.
Wan
, and
R.
Menon
, “
Full-color, large area, transmissive holograms enabled by multi-level diffractive optics
,”
Sci. Rep.
7
,
5789
(
2017
).
8.
G.
Kim
,
N.
Nagarajan
,
E.
Pastuzyn
,
K.
Jenks
,
M.
Capecchi
,
J.
Sheperd
, and
R.
Menon
, “
Deep-brain imaging via epi-fluorescence computational cannula microscopy
,”
Sci. Rep.
7
,
44791
(
2017
).
9.
G.
Kim
,
N.
Nagarajan
,
M.
Capecchi
, and
R.
Menon
, “
Cannula-based computational fluorescence microscopy
,”
Appl. Phys. Lett.
106
,
261111
(
2015
).
10.
G.
Kim
and
R.
Menon
, “
Computational imaging enables a “see-through” lensless camera
,”
Opt. Express
26
(
18
),
22826
22836
(
2018
).
11.
G.
Kim
,
K.
Isaacson
,
R.
Palmer
, and
R.
Menon
, “
Lensless photography with only an image sensor
,”
Appl. Opt.
56
(
23
),
6450
6456
(
2017
).
12.
G.
Kim
,
S.
Kapetanovic
,
R.
Palmer
, and
R.
Menon
, “
Lensless-camera based machine learning for image classification
,” arXiv:1709.00408.
13.
G. C.
Sherman
, “
Integral-transform formulation of diffraction theory
,”
J. Opt. Soc. Am. A
57
(
12
),
1490
1498
(
1967
).
14.
M.
Meem
,
S.
Banerji
,
A.
Majumder
,
P.
Hon
,
J. C.
Garcia
,
B.
Sensale-Rodriguez
, and
R.
Menon
, “
Imaging from the visible to the longwave infrared via an inverse-designed flat lens
,” arXiv:2001.03684.
15.
M.
Meem
,
S.
Banerji
,
A.
Majumder
,
C.
Dvonch
,
B.
Sensale-Rodriguez
, and
R.
Menon
, “
Imaging across the short-wave infra-red (SWIR) band via a flat multi-level diffractive lens
,”
OSA Continuum
2
(
10
),
2968
2974
(
2019
).
16.
S.
Banerji
,
M.
Meem
,
A.
Majumder
,
B.
Sensale-Rodriguez
, and
R.
Menon
, “
Imaging over an unlimited bandwidth with a single diffractive surface
,” arXiv:1907.06251.
17.
M.
Meem
,
S.
Banerji
,
A.
Majumder
,
F. G.
Vasquez
,
B.
Sensale-Rodriguez
, and
R.
Menon
, “
Broadband lightweight flat lenses for longwave-infrared imaging
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
21375
(
2019
).
18.
N.
Mohammad
,
M.
Meem
,
B.
Shen
,
P.
Wang
, and
R.
Menon
, “
Broadband imaging with one planar diffractive lens
,”
Sci. Rep.
8
,
2799
(
2018
).
19.
S.
Banerji
,
M.
Meem
,
A.
Majumder
,
B.
Sensale-Rodriguez
, and
R.
Menon
, “
Diffractive flat lens enables extreme depth-of-focus imaging
,”
Optica
7
(
3
),
214
2017
(
2020
).
20.
M.
Meem
,
S.
Banerji
,
A.
Majumder
,
C.
Pies
,
T.
Oberbiermann
,
B.
Sensale-Rodriguez
, and
R.
Menon
, “
Large-area, high-NA multi-level diffractive lens via inverse design
,”
Optica
7
(
3
),
252
253
(
2020
).
21.
H.
Liang
,
A.
Martins
,
B. H. V.
Borges
,
J.
Zhou
,
E. R.
Martins
,
J.
Li
, and
T. F.
Krauss
, “
High performance metalenses: Numerical aperture, aberrations, chromaticity, and trade-offs
,”
Optica
6
(
12
),
1461
1470
(
2019
).
22.
W. T.
Chen
,
A. Y.
Zhu
,
J.
Sisler
,
Z.
Bharwani
, and
F.
Capasso
, “
A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures
,”
Nat. Commun.
10
(
1
),
355
(
2019
).
23.
W. T.
Chen
,
A. Y.
Zhu
,
V.
Sanjeev
,
M.
Khorasaninejad
,
Z.
Shi
,
E.
Lee
, and
F.
Capasso
, “
A broadband achromatic metalens for focusing and imaging in the visible
,”
Nat. Nanotechnol.
13
,
220
226
(
2018
).
24.
Y.
Liang
,
H.
Liu
,
F.
Wang
,
H.
Meng
,
J.
Guo
,
J.
Li
, and
Z.
Wei
, “
High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths
,”
Nanomaterials
8
(
5
),
288
(
2018
).
25.
M.
Ye
,
V.
Ray
, and
Y. S.
Yi
, “
Achromatic flat subwavelength grating lens over whole visible bandwidths
,”
IEEE Photonics Technol. Lett.
30
(
10
),
955
958
(
2018
).
26.
H. C.
Wang
,
C. H.
Chu
,
P. C.
Wu
,
H. H.
Hsiao
,
H. J.
Wu
,
J. W.
Chen
,
W. H.
Lee
,
Y. C.
Lai
,
Y. W.
Huang
,
M. L.
Tseng
,
S. W.
Chang
, and
D. P.
Tsai
, “
Ultrathin planar cavity metasurfaces
,”
Small
14
,
1703920
(
2018
).
27.
M.
Khorasaninejad
,
Z.
Shi
,
A. Y.
Zhu
,
W. T.
Chen
,
V.
Sanjeev
,
A.
Zaidi
, and
F.
Capasso
, “
Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion
,”
Nano Lett.
17
(
3
),
1819
1824
(
2017
).
28.
S.
Wang
,
P. C.
Wu
,
V.-C.
Su
,
Y.-C.
Lai
,
M.-K.
Chen
,
H. Y.
Kuo
,
B. H.
Chen
,
Y. H.
Chen
,
T.-T.
Huang
,
J.-H.
Wang
,
R.-M.
Lin
,
C.-H.
Kuan
,
T.
Li
,
Z.
Wang
,
S.
Zhu
, and
D. P.
Tsai
, “
A broadband achromatic metalens in the visible
,”
Nat. Nanotechnol.
13
,
227
(
2018
).
29.
S.
Banerji
,
M.
Meem
,
A.
Majumder
,
B.
Sensale-Rodriguez
, and
R.
Menon
, “
Imaging with flat optics: Metalenses or diffractive lenses?
,”
Optica
6
(
6
),
805
810
(
2019
).
30.
S.
Banerji
and
B.
Sensale-Rodriguez
, “
A computational design framework for efficient, fabrication error-tolerant, planar THz diffractive optical elements
,”
Sci. Rep.
9
,
5801
(
2019
).
31.
J. J.
Stamnes
and
V.
Dhayalan
, “
Focusing of electric-dipole waves
,”
Pure Appl. Opt.
5
,
195
225
(
1996
).
32.
J. J.
Stamnes
and
V.
Dhayalan
, “
Focusing of electric-dipole waves in the Debye and Kirchoff approximations
,”
Pure Appl. Opt.
6
,
347
372
(
1997
).

Supplementary Material

You do not currently have access to this content.