Quantum-intensity-correlated twin beams of light can be used to measure absorption with precision beyond the classical shot-noise limit. The degree to which this can be achieved with a given estimator is defined by the quality of the twin-beam intensity correlations, which is quantified by the noise reduction factor. We derive an analytical model of twin-beam experiments, incorporating experimental parameters such as the relative detection efficiency of the beams, uncorrelated optical noise, and uncorrelated detector noise. We show that for twin beams without excessive noise, measured correlations can be improved by increasing the detection efficiency of each beam; notwithstanding, this may unbalance detection efficiency. However, for beams with excess intensity or other experimental noise, one should balance detection efficiency, even at the cost of reducing detection efficiency—we specifically define these noise conditions and verify our results with statistical simulation. This has application in design and optimization of absorption spectroscopy and imaging experiments.

1.
M.
Celebrano
,
P.
Kukura
,
A.
Renn
, and
V.
Sandoghdar
, “
Single-molecule imaging by optical absorption
,”
Nat. Photonics
5
,
95
98
(
2011
).
2.
P.
Kukura
,
M.
Celebrano
,
A.
Renn
, and
V.
Sandoghdar
, “
Single-molecule sensitivity in optical absorption at room temperature
,”
J. Phys. Chem. Lett.
1
,
3323
3327
(
2010
).
3.
M.-H.
Chien
,
M.
Brameshuber
,
B. K.
Rossboth
,
G. J.
Schütz
, and
S.
Schmid
, “
Single-molecule optical absorption imaging by nanomechanical photothermal sensing
,”
Proc. Natl. Acad. Sci.
115
,
11150
11155
(
2018
).
4.
J.
Miyazaki
,
H.
Tsurui
,
A.
Hayashi-Takagi
,
H.
Kasai
, and
T.
Kobayashi
, “
Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes
,”
Opt. Express
22
,
9024
9032
(
2014
).
5.
Y.
Ozeki
,
Y.
Kitagawa
,
K.
Sumimura
,
N.
Nishizawa
,
W.
Umemura
,
S.
Kajiyama
,
K.
Fukui
, and
K.
Itoh
, “
Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses
,”
Opt. Express
18
,
13708
13719
(
2010
).
6.
E.
Betzig
,
A.
Lewis
,
A.
Harootunian
,
M.
Isaacson
, and
E.
Kratschmer
, “
Near field scanning optical microscopy (NSOM): Development and biophysical applications
,”
Biophys. J.
49
,
269
279
(
1986
).
7.
S.
Reynaud
,
C.
Fabre
, and
E.
Giacobino
, “
Quantum fluctuations in a two-mode parametric oscillator
,”
J. Opt. Soc. Am. B
4
,
1520
1524
(
1987
).
8.
A.
Heidmann
,
R. J.
Horowicz
,
S.
Reynaud
,
E.
Giacobino
,
C.
Fabre
, and
G.
Camy
, “
Observation of quantum noise reduction on twin laser beams
,”
Phys. Rev. Lett.
59
,
2555
2557
(
1987
).
9.
P.-A.
Moreau
,
J.
Sabines-Chesterking
,
R.
Whittaker
,
S. K.
Joshi
,
P. M.
Birchall
,
A.
McMillan
,
J. G.
Rarity
, and
J. C. F.
Matthews
, “
Demonstrating an absolute quantum advantage in direct absorption measurement
,”
Sci. Rep.
7
,
1
7
(
2017
).
10.
G.
Brida
,
M.
Genovese
, and
I. R.
Berchera
, “
Experimental realization of sub-shot-noise quantum imaging
,”
Nat. Photonics
4
,
227
(
2010
).
11.
E.
Losero
,
I.
Ruo-Berchera
,
A.
Meda
,
A.
Avella
, and
M.
Genovese
, “
Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams
,”
Sci. Rep.
8
,
1
11
(
2018
).
12.
E.
Jakeman
and
J.
Rarity
, “
The use of pair production processes to reduce quantum noise in transmission measurements
,”
Opt. Commun.
59
,
219
223
(
1986
).
13.
R.
Whittaker
,
C.
Erven
,
A.
Neville
,
M.
Berry
,
J. L.
O'Brien
,
H.
Cable
, and
J. C. F.
Matthews
, “
Absorption spectroscopy at the ultimate quantum limit from single-photon states
,”
New J. Phys.
19
,
023013
(
2017
).
14.
N.
Samantaray
,
I.
Ruo-Berchera
,
A.
Meda
, and
M.
Genovese
, “
Realization of the first sub-shot-noise wide field microscope
,”
Light
6
,
e17005
(
2017
).
15.
J.
Sabines-Chesterking
,
R.
Whittaker
,
S. K.
Joshi
,
P. M.
Birchall
,
P. A.
Moreau
,
A.
McMillan
,
H. V.
Cable
,
J. L.
O'Brien
,
J. G.
Rarity
, and
J. C. F.
Matthews
, “
Sub-shot-noise transmission measurement enabled by active feed-forward of heralded single photons
,”
Phys. Rev. Appl.
8
,
014016
(
2017
).
16.
Y.
Chen
,
W.
Wadsworth
, and
T.
Birks
, “
Ultraviolet four-wave mixing in the LP02 fiber mode
,”
Opt. Lett.
38
,
3747
3750
(
2013
).
17.
B.
Sévigny
,
A.
Cassez
,
O.
Vanvincq
,
Y.
Quiquempois
, and
G.
Bouwmans
, “
High-quality ultraviolet beam generation in multimode photonic crystal fiber through nondegenerate four-wave mixing at 532 nm
,”
Opt. Lett.
40
,
2389
2392
(
2015
).
18.
H.
Pourbeyram
,
E.
Nazemosadat
, and
A.
Mafi
, “
Detailed investigation of intermodal four-wave mixing in SMF-28: Blue-red generation from green
,”
Opt. Express
23
,
14487
14500
(
2015
).
19.
H.
Pourbeyram
and
A.
Mafi
, “
Photon pair generation in multimode optical fibers via intermodal phase matching
,”
Phys. Rev. A
94
,
023815
(
2016
).
20.
A. S.
Kowligy
,
D. D.
Hickstein
,
A.
Lind
,
D. R.
Carlson
,
H.
Timmers
,
N.
Nader
,
D. L.
Maser
,
D.
Westly
,
K.
Srinivasan
,
S. B.
Papp
, and
S. A.
Diddams
, “
Tunable mid-infrared generation via wide-band four-wave mixing in silicon nitride waveguides
,”
Opt. Lett.
43
,
4220
4223
(
2018
).
21.
Y.
Sebbag
,
Y.
Barash
, and
U.
Levy
, “
Generation of coherent mid-IR light by parametric four-wave mixing in alkali vapor
,”
Opt. Lett.
44
,
971
974
(
2019
).
22.
M.
Vasilyev
,
S.-K.
Choi
,
P.
Kumar
, and
G. M.
D'Ariano
, “
Tomographic measurement of joint photon statistics of the twin-beam quantum state
,”
Phys. Rev. Lett.
84
,
2354
2357
(
2000
).
23.
M.
Bondani
,
A.
Allevi
,
G.
Zambra
,
M. G. A.
Paris
, and
A.
Andreoni
, “
Sub-shot-noise photon-number correlation in a mesoscopic twin beam of light
,”
Phys. Rev. A
76
,
013833
(
2007
).
24.
G.
Brida
,
I. P.
Degiovanni
,
M.
Genovese
,
M. L.
Rastello
, and
I.
Ruo-Berchera
, “
Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera
,”
Opt. Express
18
,
20572
20584
(
2010
).
25.
T. S.
Iskhakov
,
V. C.
Usenko
,
U. L.
Andersen
,
R.
Filip
,
M. V.
Chekhova
, and
G.
Leuchs
, “
Heralded source of bright multi-mode mesoscopic sub-poissonian light
,”
Opt. Lett.
41
,
2149
2152
(
2016
).
26.
M. A.
Finger
,
T. S.
Iskhakov
,
N. Y.
Joly
,
M. V.
Chekhova
, and
P. S. J.
Russell
, “
Raman-free, noble-gas-filled photonic-crystal fiber source for ultrafast, very bright twin-beam squeezed vacuum
,”
Phys. Rev. Lett.
115
,
143602
(
2015
).
27.
U.
Fano
, “
Ionization yield of radiations. II. The fluctuations of the number of ions
,”
Phys. Rev.
72
,
26
29
(
1947
).
28.
H. A.
Bachor
and
T. C.
Ralph
,
A Guide to Experiments in Quantum Optics
(
John Wiley & Sons, Ltd
.,
2019
), pp.
93
137
.
29.
E. M.
Purcell
, “
The question of correlation between photons in coherent light rays
,”
Nature
178
,
1449
1450
(
1956
).
30.
L.
Mandel
, “
Fluctuations of photon beams and their correlations
,”
Proc. Phys. Soc.
72
,
1037
1048
(
1958
).
31.
L.
Mandel
, “
Fluctuations of photon beams: The distribution of the photo-electrons
,”
Proc. Phys. Soc.
74
,
233
243
(
1959
).
32.
L.
Mandel
, “
Non-classical states of the electromagnetic field
,”
Phys. Scr.
T12
,
34
42
(
1986
).
33.
N.
Samantaray
, “
Quantum enhanced imaging and sensing with correlated light
,” Ph.D. thesis (
Politecnico Di Torino
,
2017
).
34.
G.
Agrawal
,
Nonlinear Fiber Optics
, 5th ed. (
Academic Press
,
2012
).
35.
R. H.
Stolen
, “
Chapter 5: Nonlinear properties of optical fibers
,” in
Optical Fiber Telecommunications
, edited by
S. E.
Miller
and
A. G.
Chynoweth
(
Academic Press
,
1979
), pp.
125
150
.
36.
T. R.
Hart
,
R. L.
Aggarwal
, and
B.
Lax
, “
Temperature dependence of Raman scattering in silicon
,”
Phys. Rev. B
1
,
638
642
(
1970
).
37.
A. V.
Masalov
,
A.
Kuzhamuratov
, and
A. I.
Lvovsky
, “
Noise spectra in balanced optical detectors based on transimpedance amplifiers
,”
Rev. Sci. Instrum.
88
,
113109
(
2017
).
38.
K.
Irie
,
A. E.
McKinnon
,
K.
Unsworth
, and
I. M.
Woodhead
, “
A model for measurement of noise in CCD digital-video cameras
,”
Meas. Sci. Technol.
19
,
045207
(
2008
).
39.
E. J.
Allen
,
G.
Ferranti
,
K. R.
Rusimova
,
R. J.
Francis-Jones
,
M.
Azini
,
D. H.
Mahler
,
T. C.
Ralph
,
P. J.
Mosley
, and
J. C.
Matthews
, “
Passive, broadband, and low-frequency suppression of laser amplitude noise to the shot-noise limit using a hollow-core fiber
,”
Phys. Rev. Appl.
12
,
044073
(
2019
).
40.
J. D.
Mueller
,
N.
Samantaray
, and
J. C. F.
Matthews
, “
A practical model of twin-beam experiments for sub-shot-noise absorption measurements
,” data.bris (
2020
).

Supplementary Material

You do not currently have access to this content.