In recent years, semiconductor quantum dots have demonstrated their potential to reach the goal of being an ideal source of single and entangled photon pairs. Exciting reports of near unity entanglement fidelity, close to unity photon indistinguishability, and high collection efficiency in nanophotonic structures have been demonstrated by several distinct groups, showing unequivocally the maturity of this technology. To achieve the required complexity and scalability in realistic quantum photonic implementations, two-photon interference of photons from multi-sources must be reached. While high indistinguishability values have been observed for photons generated from the same source within a relatively short time separation, achieving similar visibility for larger time separation or in multi-source experiments still requires intensive efforts. In fact, the coupling to the particular mesoscopic environment of charge carriers confined in the quantum dot leads to decoherence processes, which limit the quantum interference effects to a short time window. Here, we discuss the progress in studying the dynamics of this decoherence, which crucially depends on the evolution of line broadening in high-quality self-assembled InGaAs quantum dots. Characterization of line broadening mechanisms is the first fundamental step to be able to counteract them. Optimization of the growth and active and passive control of the radiative transitions are crucial for the technological readiness of non-classical light sources based on semiconductor platforms.

1.
P.
Michler
,
A.
Kiraz
,
C.
Becher
,
W. V.
Schoenfeld
,
P. M.
Petroff
,
L.
Zhang
,
E.
Hu
, and
A.
Imamoğlu
, “
A quantum dot single-photon turnstile device
,”
Science
290
,
2282
2285
(
2000
).
2.
C.
Santori
,
D.
Fattal
,
J.
Vučković
,
G. S.
Solomon
, and
Y.
Yamamoto
, “
Indistinguishable photons from a single-photon device
,”
Nature
419
,
594
597
(
2002
).
3.
E.
Knill
,
R.
Laflamme
, and
G. J.
Milburn
, “
A scheme for efficient quantum computation with linear optics
,”
Nature
409
,
46
52
(
2001
).
4.
P.
Kok
,
H.
Lee
, and
J. P.
Dowling
, “
Creation of large-photon-number path entanglement conditioned on photodetection
,”
Phys. Rev. A
65
,
052104
(
2002
).
5.
A.
Kiraz
,
M.
Atatüre
, and
A.
Imamoğlu
, “
Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing
,”
Phys. Rev. A
69
,
032305
(
2004
).
6.
L.
Childress
,
J. M.
Taylor
,
A. S.
Sørensen
, and
M. D.
Lukin
, “
Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters
,”
Phys. Rev. A
72
,
052330
(
2005
).
7.
J. L.
O'Brien
,
A.
Furusawa
, and
J.
Vučković
, “
Photonic quantum technologies
,”
Nat. Photonics
3
,
687
(
2009
).
8.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
, “
Quantum-enhanced measurements: Beating the standard quantum limit
,”
Science
306
,
1330
1336
(
2004
).
9.
H.
Wang
,
J.
Qin
,
X.
Ding
,
M.-C.
Chen
,
S.
Chen
,
X.
You
,
Y.-M.
He
,
X.
Jiang
,
L.
You
,
Z.
Wang
,
C.
Schneider
,
J. J.
Renema
,
S.
Höfling
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
Boson sampling with 20 input photons and a 60-mode interferometer in a 10 14-dimensional Hilbert space
,”
Phys. Rev. Lett.
123
,
250503
(
2019
).
10.
Quantum Dots for Quantum Information Technologies
, edited by
P.
Michler
(
Springer International Publishing
,
2017
).
11.
P.
Senellart
,
G.
Solomon
, and
A.
White
, “
High-performance semiconductor quantum-dot single-photon sources
,”
Nat. Nanotechnol.
12
,
1026
1039
(
2017
).
12.
H.
Wang
,
H.
Hu
,
T.-H.
Chung
,
J.
Qin
,
X.
Yang
,
J.-P.
Li
,
R.-Z.
Liu
,
H.-S.
Zhong
,
Y.-M.
He
,
X.
Ding
,
Y.-H.
Deng
,
Q.
Dai
,
Y.-H.
Huo
,
S.
Höfling
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability
,”
Phys. Rev. Lett.
122
,
113602
(
2019
).
13.
J.-W.
Pan
,
Z.-B.
Chen
,
C.-Y.
Lu
,
H.
Weinfurter
,
A.
Zeilinger
, and
M.
Żukowski
, “
Multiphoton entanglement and interferometry
,”
Rev. Mod. Phys.
84
,
777
838
(
2012
).
14.
C. K.
Hong
,
Z. Y.
Ou
, and
L.
Mandel
, “
Measurement of subpicosecond time intervals between two photons by interference
,”
Phys. Rev. Lett.
59
,
2044
2046
(
1987
).
15.
J.
Bylander
,
I.
Robert-Philip
, and
I.
Abram
, “
Interference and correlation of two independent photons
,”
Eur. Phys. J. D
22
,
295
301
(
2003
).
16.
A.
Berthelot
,
I.
Favero
,
G.
Cassabois
,
C.
Voisin
,
C.
Delalande
,
P.
Roussignol
,
R.
Ferreira
, and
J. M.
Gérard
, “
Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot
,”
Nat. Phys.
2
,
759
(
2006
).
17.
L.
Coolen
,
X.
Brokmann
, and
J.-P.
Hermier
, “
Modeling coherence measurements on a spectrally diffusing single-photon emitter
,”
Phys. Rev. A
76
,
033824
(
2007
).
18.
S.
Hepp
,
M.
Jetter
,
S. L.
Portalupi
, and
P.
Michler
, “
Semiconductor quantum dots for integrated quantum photonics
,”
Adv. Quantum Technol.
2
,
1900020
(
2019
).
19.
Y.-M.
He
,
Y.
He
,
Y.-J.
Wei
,
D.
Wu
,
M.
Atatüre
,
C.
Schneider
,
S.
Höfling
,
M.
Kamp
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
On-demand semiconductor single-photon source with near-unity indistinguishability
,”
Nat. Nanotechnol.
8
,
213
217
(
2013
).
20.
X.
Ding
,
Y.
He
,
Z.-C.
Duan
,
N.
Gregersen
,
M.-C.
Chen
,
S.
Unsleber
,
S.
Maier
,
C.
Schneider
,
M.
Kamp
,
S.
Höfling
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar
,”
Phys. Rev. Lett.
116
,
020401
(
2016
).
21.
N.
Somaschi
,
V.
Giesz
,
L. D.
Santis
,
J. C.
Loredo
,
M. P.
Almeida
,
G.
Hornecker
,
S. L.
Portalupi
,
T.
Grange
,
C.
Antón
,
J.
Demory
,
C.
Gómez
,
I.
Sagnes
,
N. D.
Lanzillotti-Kimura
,
A.
Lemaítre
,
A.
Auffeves
,
A. G.
White
,
L.
Lanco
, and
P.
Senellart
, “
Near-optimal single-photon sources in the solid state
,”
Nat. Photonics
10
,
340
345
(
2016
).
22.
J. C.
Loredo
,
N. A.
Zakaria
,
N.
Somaschi
,
C.
Anton
,
L.
de Santis
,
V.
Giesz
,
T.
Grange
,
M. A.
Broome
,
O.
Gazzano
,
G.
Coppola
,
I.
Sagnes
,
A.
Lemaitre
,
A.
Auffeves
,
P.
Senellart
,
M. P.
Almeida
, and
A. G.
White
, “
Scalable performance in solid-state single-photon sources
,”
Optica
3
,
433
440
(
2016
).
23.
H.
Wang
,
Z.-C.
Duan
,
Y.-H.
Li
,
S.
Chen
,
J.-P.
Li
,
Y.-M.
He
,
M.-C.
Chen
,
Y.
He
,
X.
Ding
,
C.-Z.
Peng
,
C.
Schneider
,
M.
Kamp
,
S.
Höfling
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
Near-transform-limited single photons from an efficient solid-state quantum emitter
,”
Phys. Rev. Lett.
116
,
213601
(
2016
).
24.
C.
Roy
and
S.
Hughes
, “
Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics: Excitation-induced dephasing and nonperturbative cavity feeding effects
,”
Phys. Rev. Lett.
106
,
247403
(
2011
).
25.
P.
Tighineanu
,
C. L.
Dreeßen
,
C.
Flindt
,
P.
Lodahl
, and
A. S.
Sørensen
, “
Phonon decoherence of quantum dots in photonic structures: Broadening of the zero-phonon line and the role of dimensionality
,”
Phys. Rev. Lett.
120
,
257401
(
2018
).
26.
P.
Borri
,
W.
Langbein
,
U.
Woggon
,
V.
Stavarache
,
D.
Reuter
, and
A. D.
Wieck
, “
Exciton dephasing via phonon interactions in InAs quantum dots: Dependence on quantum confinement
,”
Phys. Rev. B
71
,
115328
(
2005
).
27.
A.
Reigue
,
J.
Iles-Smith
,
F.
Lux
,
L.
Monniello
,
M.
Bernard
,
F.
Margaillan
,
A.
Lemaitre
,
A.
Martinez
,
D. P. S.
McCutcheon
,
J.
Mørk
,
R.
Hostein
, and
V.
Voliotis
, “
Probing electron-phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots
,”
Phys. Rev. Lett.
118
,
233602
(
2017
).
28.
E. A.
Muljarov
and
R.
Zimmermann
, “
Dephasing in quantum dots: Quadratic coupling to acoustic phonons
,”
Phys. Rev. Lett.
93
,
237401
(
2004
).
29.
S.
Varoutsis
,
S.
Laurent
,
P.
Kramper
,
A.
Lemaître
,
I.
Sagnes
,
I.
Robert-Philip
, and
I.
Abram
, “
Restoration of photon indistinguishability in the emission of a semiconductor quantum dot
,”
Phys. Rev. B
72
,
041303
(
2005
).
30.
S.
Unsleber
,
D. P. S.
McCutcheon
,
M.
Dambach
,
M.
Lermer
,
N.
Gregersen
,
S.
Höfling
,
J.
Mørk
,
C.
Schneider
, and
M.
Kamp
, “
Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter
,”
Phys. Rev. B
91
,
075413
(
2015
).
31.
T.
Grange
,
N.
Somaschi
,
C.
Antón
,
L.
De Santis
,
G.
Coppola
,
V.
Giesz
,
A.
Lemaître
,
I.
Sagnes
,
A.
Auffèves
, and
P.
Senellart
, “
Reducing phonon-induced decoherence in solid-state single-photon sources with cavity quantum electrodynamics
,”
Phys. Rev. Lett.
118
,
253602
(
2017
).
32.
J.
Iles-Smith
,
D. P. S.
McCutcheon
,
A.
Nazir
, and
J.
Mork
, “
Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources
,”
Nat. Photonics
11
,
521
526
(
2017
).
33.
F.
Liu
,
A. J.
Brash
,
J.
O'Hara
,
L. M. P. P.
Martins
,
C. L.
Phillips
,
R. J.
Coles
,
B.
Royall
,
E.
Clarke
,
C.
Bentham
,
N.
Prtljaga
,
I. E.
Itskevich
,
L. R.
Wilson
,
M. S.
Skolnick
, and
A. M.
Fox
, “
High Purcell factor generation of indistinguishable on-chip single photons
,”
Nat. Nanotechnol.
13
,
835
840
(
2018
).
34.
A.
Greilich
,
D. R.
Yakovlev
,
A.
Shabaev
,
A. L.
Efros
,
I. A.
Yugova
,
R.
Oulton
,
V.
Stavarache
,
D.
Reuter
,
A.
Wieck
, and
M.
Bayer
, “
Mode locking of electron spin coherences in singly charged quantum dots
,”
Science
313
,
341
345
(
2006
).
35.
B.
Urbaszek
,
X.
Marie
,
T.
Amand
,
O.
Krebs
,
P.
Voisin
,
P.
Maletinsky
,
A.
Högele
, and
A.
Imamoglu
, “
Nuclear spin physics in quantum dots: An optical investigation
,”
Rev. Mod. Phys.
85
,
79
133
(
2013
).
36.
E. A.
Chekhovich
,
M. N.
Makhonin
,
A. I.
Tartakovskii
,
A.
Yacoby
,
H.
Bluhm
,
K. C.
Nowack
, and
L. M. K.
Vandersypen
, “
Nuclear spin effects in semiconductor quantum dots
,”
Nat. Mater.
12
,
494
504
(
2013
).
37.
M.
Bayer
,
G.
Ortner
,
O.
Stern
,
A.
Kuther
,
A. A.
Gorbunov
,
A.
Forchel
,
P.
Hawrylak
,
S.
Fafard
,
K.
Hinzer
,
T. L.
Reinecke
,
S. N.
Walck
,
J. P.
Reithmaier
,
F.
Klopf
, and
F.
Schäfer
, “
Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots
,”
Phys. Rev. B
65
,
195315
(
2002
).
38.
J.
Hansom
,
C. H. H.
Schulte
,
C. L.
Gall
,
C.
Matthiesen
,
E.
Clarke
,
M.
Hugues
,
J. M.
Taylor
, and
M.
Atature
, “
Environment-assisted quantum control of a solid-state spin via coherent dark states
,”
Nat. Phys.
10
,
725
730
(
2014
).
39.
P.
Maletinsky
,
A.
Badolato
, and
A.
Imamoglu
, “
Dynamics of quantum dot nuclear spin polarization controlled by a single electron
,”
Phys. Rev. Lett.
99
,
056804
(
2007
).
40.
E. A.
Chekhovich
,
M. N.
Makhonin
,
K. V.
Kavokin
,
A. B.
Krysa
,
M. S.
Skolnick
, and
A. I.
Tartakovskii
, “
Pumping of nuclear spins by optical excitation of spin-forbidden transitions in a quantum dot
,”
Phys. Rev. Lett.
104
,
066804
(
2010
).
41.
E. A.
Chekhovich
,
A.
Ulhaq
,
E.
Zallo
,
F.
Ding
,
O. G.
Schmidt
, and
M. S.
Skolnick
, “
Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots
,”
Nat. Mater.
16
,
982
986
(
2017
).
42.
A.
Reigue
,
R.
Hostein
, and
V.
Voliotis
, “
Resonance fluorescence of a single semiconductor quantum dot: The impact of a fluctuating electrostatic environment
,”
Semicond. Sci. Technol.
34
,
113001
(
2019
).
43.
B. D.
Gerardot
,
R. J.
Barbour
,
D.
Brunner
,
P. A.
Dalgarno
,
A.
Badolato
,
N.
Stoltz
,
P. M.
Petroff
,
J.
Houel
, and
R. J.
Warburton
, “
Laser spectroscopy of individual quantum dots charged with a single hole
,”
Appl. Phys. Lett.
99
,
243112
(
2011
).
44.
J.
Houel
,
A. V.
Kuhlmann
,
L.
Greuter
,
F.
Xue
,
M.
Poggio
,
B. D.
Gerardot
,
P. A.
Dalgarno
,
A.
Badolato
,
P. M.
Petroff
,
A.
Ludwig
,
D.
Reuter
,
A. D.
Wieck
, and
R. J.
Warburton
, “
Probing single-charge fluctuations at a GaAs / AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot
,”
Phys. Rev. Lett.
108
,
107401
(
2012
).
45.
H. S.
Nguyen
,
G.
Sallen
,
M.
Abbarchi
,
R.
Ferreira
,
C.
Voisin
,
P.
Roussignol
,
G.
Cassabois
, and
C.
Diederichs
, “
Photoneutralization and slow capture of carriers in quantum dots probed by resonant excitation spectroscopy
,”
Phys. Rev. B
87
,
115305
(
2013
).
46.
C. F.
Wang
,
A.
Badolato
,
I.
Wilson-Rae
,
P. M.
Petroff
,
E.
Hu
,
J.
Urayama
, and
A.
Imamoglu
, “
Optical properties of single InAs quantum dots in close proximity to surfaces
,”
Appl. Phys. Lett.
85
,
3423
3425
(
2004
).
47.
A.
Majumdar
,
E. D.
Kim
, and
J.
Vučković
, “
Effect of photogenerated carriers on the spectral diffusion of a quantum dot coupled to a photonic crystal cavity
,”
Phys. Rev. B
84
,
195304
(
2011
).
48.
J.
Liu
,
K.
Konthasinghe
,
M.
Davanço
,
J.
Lawall
,
V.
Anant
,
V.
Verma
,
R.
Mirin
,
S. W.
Nam
,
J. D.
Song
,
B.
Ma
,
Z. S.
Chen
,
H. Q.
Ni
,
Z. C.
Niu
, and
K.
Srinivasan
, “
Single self-assembled InAs / GaAs quantum dots in photonic nanostructures: The role of nanofabrication
,”
Phys. Rev. Appl.
9
,
064019
(
2018
).
49.
A. V.
Kuhlmann
,
J. H.
Prechtel
,
J.
Houel
,
A.
Ludwig
,
D.
Reuter
,
A. D.
Wieck
, and
R. J.
Warburton
, “
Transform-limited single photons from a single quantum dot
,”
Nat. Commun.
6
,
8204
(
2015
).
50.
B.
Guha
,
F.
Marsault
,
F.
Cadiz
,
L.
Morgenroth
,
V.
Ulin
,
V.
Berkovitz
,
A.
Lemaître
,
C.
Gomez
,
A.
Amo
,
S.
Combrié
,
B.
Gérard
,
G.
Leo
, and
I.
Favero
, “
Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 10 6
,”
Optica
4
,
218–221
(
2017
).
51.
D.
Najer
,
I.
Söllner
,
P.
Sekatski
,
V.
Dolique
,
M. C.
Löbl
,
D.
Riedel
,
R.
Schott
,
S.
Starosielec
,
S. R.
Valentin
,
A. D.
Wieck
,
N.
Sangouard
,
A.
Ludwig
, and
R. J.
Warburton
, “
A gated quantum dot strongly coupled to an optical microcavity
,”
Nature
575
,
622
627
(
2019
).
52.
R.
Dahbashi
,
J.
Hübner
,
F.
Berski
,
K.
Pierz
, and
M.
Oestreich
, “
Optical spin noise of a single hole spin localized in an (InGa)As quantum dot
,”
Phys. Rev. Lett.
112
,
156601
(
2014
).
53.
J.
Wiegand
,
D. S.
Smirnov
,
J.
Hübner
,
M. M.
Glazov
, and
M.
Oestreich
, “
Spin and reoccupation noise in a single quantum dot beyond the fluctuation-dissipation theorem
,”
Phys. Rev. B
97
,
081403
(
2018
).
54.
D.
Chen
,
G. R.
Lander
,
K. S.
Krowpman
,
G. S.
Solomon
, and
E. B.
Flagg
, “
Characterization of the local charge environment of a single quantum dot via resonance fluorescence
,”
Phys. Rev. B
93
,
115307
(
2016
).
55.
C.
Arnold
,
V.
Loo
,
A.
Lemaître
,
I.
Sagnes
,
O.
Krebs
,
P.
Voisin
,
P.
Senellart
, and
L.
Lanco
, “
Cavity-enhanced real-time monitoring of single-charge jumps at the microsecond time scale
,”
Phys. Rev. X
4
,
021004
(
2014
).
56.
C.
Matthiesen
,
M. J.
Stanley
,
M.
Hugues
,
E.
Clarke
, and
M.
Atatüre
, “
Full counting statistics of quantum dot resonance fluorescence
,”
Sci. Rep.
4
,
4911
(
2015
).
57.
A. V.
Kuhlmann
,
J.
Houel
,
A.
Ludwig
,
L.
Greuter
,
D.
Reuter
,
A. D.
Wieck
,
M.
Poggio
, and
R. J.
Warburton
, “
Charge noise and spin noise in a semiconductor quantum device
,”
Nat. Phys.
9
,
570
575
(
2013
).
58.
M. J.
Stanley
,
C.
Matthiesen
,
J.
Hansom
,
C. L.
Gall
,
C. H. H.
Schulte
,
E.
Clarke
, and
M.
Atatüre
, “
Dynamics of a mesoscopic nuclear spin ensemble interacting with an optically driven electron spin
,”
Phys. Rev. B
90
,
195305
(
2014
).
59.
T.
Legero
,
T.
Wilk
,
A.
Kuhn
, and
G.
Rempe
, “
Characterization of single photons using two-photon interference
,” in
Advances in Atomic, Molecular, and Optical Physics
, edited by
G.
Rempe
and
M.
Scully
(
Elsevier
,
Amsterdam
,
2006
), Vol.
53
, pp.
253
289
.
60.
A.
Thoma
,
P.
Schnauber
,
M.
Gschrey
,
M.
Seifried
,
J.
Wolters
,
J.-H.
Schulze
,
A.
Strittmatter
,
S.
Rodt
,
A.
Carmele
,
A.
Knorr
,
T.
Heindel
, and
S.
Reitzenstein
, “
Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments
,”
Phys. Rev. Lett.
116
,
033601
(
2016
).
61.
S.
Gerhardt
,
J.
Iles-Smith
,
D. P. S.
McCutcheon
,
Y.-M.
He
,
S.
Unsleber
,
S.
Betzold
,
N.
Gregersen
,
J.
Mørk
,
S.
Höfling
, and
C.
Schneider
, “
Intrinsic and environmental effects on the interference properties of a high-performance quantum dot single-photon source
,”
Phys. Rev. B
97
,
195432
(
2018
).
62.
J. H.
Weber
,
B.
Kambs
,
J.
Kettler
,
S.
Kern
,
J.
Maisch
,
H.
Vural
,
M.
Jetter
,
S. L.
Portalupi
,
C.
Becher
, and
P.
Michler
, “
Two-photon interference in the telecom c-band after frequency conversion of photons from remote quantum emitters
,”
Nat. Nanotechnol.
14
,
23
26
(
2019
).
63.
H.
Wang
,
Y.-M.
He
,
T.-H.
Chung
,
H.
Hu
,
Y.
Yu
,
S.
Chen
,
X.
Ding
,
M.-C.
Chen
,
J.
Qin
,
X.
Yang
,
R.-Z.
Liu
,
Z.-C.
Duan
,
J.-P.
Li
,
S.
Gerhardt
,
K.
Winkler
,
J.
Jurkat
,
L.-J.
Wang
,
N.
Gregersen
,
Y.-H.
Huo
,
Q.
Dai
,
S.
Yu
,
S.
Höfling
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
Towards optimal single-photon sources from polarized microcavities
,”
Nat. Photonics
13
,
770
775
(
2019
).
64.
C.
Schimpf
,
M.
Reindl
,
P.
Klenovský
,
T.
Fromherz
,
S. F. C. D.
Silva
,
J.
Hofer
,
C.
Schneider
,
S.
Höfling
,
R.
Trotta
, and
A.
Rastelli
, “
Resolving the temporal evolution of line broadening in single quantum emitters
,”
Opt. Express
27
,
35290
35307
(
2019
).
65.
H.
Vural
,
J.
Maisch
,
I.
Gerhardt
,
M.
Jetter
,
S. L.
Portalupi
, and
P.
Michler
, “
Characterization of spectral diffusion by slow-light photon-correlation spectroscopy
,”
Phys. Rev. B
101
,
161401
(
2020
).
66.
X.
Brokmann
,
M.
Bawendi
,
L.
Coolen
, and
J.-P.
Hermier
, “
Photon-correlation Fourier spectroscopy
,”
Opt. Express
14
,
6333
6341
(
2006
).
67.
A. P.
Beyler
,
L. F.
Marshall
,
J.
Cui
,
X.
Brokmann
, and
M. G.
Bawendi
, “
Direct observation of rapid discrete spectral dynamics in single colloidal CdSe-CdS core-shell quantum dots
,”
Phys. Rev. Lett.
111
,
177401
(
2013
).
68.
H.
Vural
,
S. L.
Portalupi
,
J.
Maisch
,
S.
Kern
,
J. H.
Weber
,
M.
Jetter
,
J.
Wrachtrup
,
R.
Löw
,
I.
Gerhardt
, and
P.
Michler
, “
Two-photon interference in an atom-quantum dot hybrid system
,”
Optica
5
,
367
373
(
2018
).
69.
J. H.
Weber
,
J.
Kettler
,
H.
Vural
,
M.
Müller
,
J.
Maisch
,
M.
Jetter
,
S. L.
Portalupi
, and
P.
Michler
, “
Overcoming correlation fluctuations in two-photon interference experiments with differently bright and independently blinking remote quantum emitters
,”
Phys. Rev. B
97
,
195414
(
2018
).
70.
E. B.
Flagg
,
A.
Muller
,
S. V.
Polyakov
,
A.
Ling
,
A.
Migdall
, and
G. S.
Solomon
, “
Interference of single photons from two separate semiconductor quantum dots
,”
Phys. Rev. Lett.
104
,
137401
(
2010
).
71.
W.
Gao
,
P.
Fallahi
,
E.
Togan
,
A.
Delteil
,
Y.
Chin
,
J.
Miguel-Sanchez
, and
A.
Imamoğlu
, “
Quantum teleportation from a propagating photon to a solid-state spin qubit
,”
Nat. Commun.
4
,
2744
(
2013
).
72.
K. D.
Jöns
,
K.
Stensson
,
M.
Reindl
,
M.
Swillo
,
Y.
Huo
,
V.
Zwiller
,
A.
Rastelli
,
R.
Trotta
, and
G.
Björk
, “
Two-photon interference from two blinking quantum emitters
,”
Phys. Rev. B
96
,
075430
(
2017
).
73.
P.
Gold
,
A.
Thoma
,
S.
Maier
,
S.
Reitzenstein
,
C.
Schneider
,
S.
Höfling
, and
M.
Kamp
, “
Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths
,”
Phys. Rev. B
89
,
035313
(
2014
).
74.
V.
Giesz
,
S. L.
Portalupi
,
T.
Grange
,
C.
Antón
,
L.
De Santis
,
J.
Demory
,
N.
Somaschi
,
I.
Sagnes
,
A.
Lemaître
,
L.
Lanco
,
A.
Auffèves
, and
P.
Senellart
, “
Cavity-enhanced two-photon interference using remote quantum dot sources
,”
Phys. Rev. B
92
,
161302
(
2015
).
75.
R. B.
Patel
,
A. J.
Bennett
,
I.
Farrer
,
C. A.
Nicoll
,
D. A.
Ritchie
, and
A. J.
Shields
, “
Two-photon interference of the emission from electrically tunable remote quantum dots
,”
Nat. Photonics
4
,
632
635
(
2010
).
76.
M.
Reindl
,
K. D.
Jöns
,
D.
Huber
,
C.
Schimpf
,
Y.
Huo
,
V.
Zwiller
,
A.
Rastelli
, and
R.
Trotta
, “
Phonon-assisted two-photon interference from remote quantum emitters
,”
Nano Lett.
17
,
4090
4095
(
2017
).
77.
N.
Akopian
,
U.
Perinetti
,
L.
Wang
,
A.
Rastelli
,
O. G.
Schmidt
, and
V.
Zwiller
, “
Tuning single GaAs quantum dots in resonance with a rubidium vapor
,”
Appl. Phys. Lett.
97
,
082103
(
2010
).
78.
S. L.
Portalupi
,
M.
Widmann
,
C.
Nawrath
,
M.
Jetter
,
P.
Michler
,
J.
Wrachtrup
, and
I.
Gerhardt
, “
Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition
,”
Nat. Commun.
7
,
13632
(
2016
).
79.
M.
Zopf
,
T.
Macha
,
R.
Keil
,
E.
Uruñuela
,
Y.
Chen
,
W.
Alt
,
L.
Ratschbacher
,
F.
Ding
,
D.
Meschede
, and
O. G.
Schmidt
, “
Frequency feedback for two-photon interference from separate quantum dots
,”
Phys. Rev. B
98
,
161302
(
2018
).
80.
E. S.
Moskalenko
,
V.
Donchev
,
K. F.
Karlsson
,
P. O.
Holtz
,
B.
Monemar
,
W. V.
Schoenfeld
,
J. M.
Garcia
, and
P. M.
Petroff
, “
Effect of an additional infrared excitation on the luminescence efficiency of a single InAs/GaAs quantum dot
,”
Phys. Rev. B
68
,
155317
(
2003
).
81.
H. S.
Nguyen
,
G.
Sallen
,
C.
Voisin
,
P.
Roussignol
,
C.
Diederichs
, and
G.
Cassabois
, “
Optically gated resonant emission of single quantum dots
,”
Phys. Rev. Lett.
108
,
057401
(
2012
).
82.
Y.
Benny
,
Y.
Kodriano
,
E.
Poem
,
D.
Gershoni
,
T. A.
Truong
, and
P. M.
Petroff
, “
Excitation spectroscopy of single quantum dots at tunable positive, neutral, and negative charge states
,”
Phys. Rev. B
86
,
085306
(
2012
).
83.
O.
Gazzano
,
T.
Huber
,
V.
Loo
,
S.
Polyakov
,
E. B.
Flagg
, and
G. S.
Solomon
, “
Effects of resonant-laser excitation on the emission properties in a single quantum dot
,”
Optica
5
,
354
359
(
2018
).
84.
J.
Hansom
,
C. H. H.
Schulte
,
C.
Matthiesen
,
M. J.
Stanley
, and
M.
Atatüre
, “
Frequency stabilization of the zero-phonon line of a quantum dot via phonon-assisted active feedback
,”
Appl. Phys. Lett.
105
,
172107
(
2014
).
85.
J. H.
Prechtel
,
A. V.
Kuhlmann
,
J.
Houel
,
L.
Greuter
,
A.
Ludwig
,
D.
Reuter
,
A. D.
Wieck
, and
R. J.
Warburton
, “
Frequency-stabilized source of single photons from a solid-state qubit
,”
Phys. Rev. X
3
,
041006
(
2013
).
86.
R. N. E.
Malein
,
T. S.
Santana
,
J. M.
Zajac
,
A. C.
Dada
,
E. M.
Gauger
,
P. M.
Petroff
,
J. Y.
Lim
,
J. D.
Song
, and
B. D.
Gerardot
, “
Screening nuclear field fluctuations in quantum dots for indistinguishable photon generation
,”
Phys. Rev. Lett.
116
,
257401
(
2016
).
87.
C.
Latta
,
A.
Hogele
,
Y.
Zhao
,
A. N.
Vamivakas
,
P.
Maletinsky
,
M.
Kroner
,
J.
Dreiser
,
I.
Carusotto
,
A.
Badolato
,
D.
Schuh
,
W.
Wegscheider
,
M.
Atatüre
, and
A.
Imamoglu
, “
Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization
,”
Nat. Phys.
5
,
758
763
(
2009
).
88.
X.
Xu
,
W.
Yao
,
B.
Sun
,
D. G.
Steel
,
A. S.
Bracker
,
D.
Gammon
, and
L. J.
Sham
, “
Optically controlled locking of the nuclear field via coherent dark-state spectroscopy
,”
Nature
459
,
1105
1109
(
2009
).
89.
G.
Éthier-Majcher
,
D.
Gangloff
,
R.
Stockill
,
E.
Clarke
,
M.
Hugues
,
C. L.
Gall
, and
M.
Atatüre
, “
Improving a solid-state qubit through an engineered mesoscopic environment
,”
Phys. Rev. Lett.
119
,
130503
(
2017
).
90.
A.
Al-Ashouri
,
A.
Kurzmann
,
B.
Merkel
,
A.
Ludwig
,
A. D.
Wieck
,
A.
Lorke
, and
M.
Geller
, “
Photon noise suppression by a built-in feedback loop
,”
Nano Lett.
19
,
135
141
(
2019
).
91.
H. F.
Fotso
,
A. E.
Feiguin
,
D. D.
Awschalom
, and
V. V.
Dobrovitski
, “
Suppressing spectral diffusion of emitted photons with optical pulses
,”
Phys. Rev. Lett.
116
,
033603
(
2016
).
92.
T.
Nutz
,
P.
Androvitsaneas
,
A.
Young
,
R.
Oulton
, and
D. P. S.
McCutcheon
, “
Stabilization of an optical transition energy via nuclear Zeno dynamics in quantum-dot–cavity systems
,”
Phys. Rev. A
99
,
053853
(
2019
).
93.
Y.-M.
He
,
H.
Wang
,
C.
Wang
,
M.-C.
Chen
,
X.
Ding
,
J.
Qin
,
Z.-C.
Duan
,
S.
Chen
,
J.-P.
Li
,
R.-Z.
Liu
,
C.
Schneider
,
M.
Atatüre
,
S.
Höfling
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
Coherently driving a single quantum two-level system with dichromatic laser pulses
,”
Nat. Phys.
15
,
941
946
(
2019
).
You do not currently have access to this content.