Betavoltaic batteries are highly attractive for numerous application scenarios where power sources with super-long lifetime and high energy density are required. However, the reported betavoltaic batteries still suffer from low output power and low efficiency, which are much lower than theoretical predictions and bring uncertainty to the future of betavoltaics. In this work, we started from the fundamental hypothesis of betavoltaics and found that, in practice, betavoltaic batteries work under small injection conditions, where the device behavior deviates from the ideal p–n junction, resulting in the performance gap between theoretical and experimental results. We proposed a precise model on semiconductor units, taking into account the recombination current and realistic parameters, and systematically investigated the conversion efficiencies of common planar betavoltaic batteries. Modeling results suggested that semiconductors with low recombination current and a wide bandgap could be ideal candidates for planar betavoltaic batteries using 63Ni and 3H. The validity of this model is confirmed by the experimental results of a prototype battery consisting of a SiC p+–n junction and a 63Ni source. Our work provides a powerful tool for predicting the output performance and optimizing the device structure of betavoltaic batteries.

1.
L. C.
Olsen
, in
Proceedings of the 12th Space Photovoltaic Research and Technology Conference
(
Washington State University
,
1993
), p.
256
.
2.
T. R.
Alam
,
M. G.
Spencer
,
M. A.
Prelas
, and
M. A.
Pierson
,
Int. J. Energy Res.
42
(
7
),
2564
(
2018
).
3.
Y.
Ma
,
N.
Wang
,
J.
Chen
,
C.
Chen
,
H.
San
,
J.
Chen
, and
Z.
Cheng
,
ACS Appl. Mater. Interfaces
10
(
26
),
22174
(
2018
).
4.
L. C.
Olsen
,
Energy Convers.
13
(
4
),
117
(
1973
).
5.
P.
Rappaport
,
Phys. Rev.
93
(
1
),
246
(
1954
).
6.
H.
Flicker
,
J. J.
Loferski
, and
T. S.
Elleman
,
IEEE Trans. Electron Devices
11
(
1
),
2
(
1964
).
7.
K. E.
Bower
,
Y. A.
Burbunel
,
Y. G.
Shreter
, and
G. W.
Bohnert
,
Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries
(
CRC Press
,
Boca Raton
,
2002
).
8.
S.
Deus
, in
Proceedings of Photovoltaic Specialists Conference
(
IEEE
,
2000
), p.
1246
.
9.
V. S.
Bormashov
,
S. Y.
Troschiev
,
S. A.
Tarelkin
,
A. P.
Volkov
,
D. V.
Teteruk
,
A. V.
Golovanov
,
M. S.
Kuznetsov
,
N. V.
Kornilov
,
S. A.
Terentiev
, and
V. D.
Blank
,
Diamond Relat. Mater.
84
,
41
(
2018
).
10.
Z.
Cheng
,
H.
San
,
Z.
Feng
,
B.
Liu
, and
X.
Chen
,
Electron. Lett.
47
(
12
),
720
(
2011
).
11.
C. D.
Cress
,
B. J.
Landi
,
R. P.
Raffaelle
, and
D. M.
Wilt
,
J. Appl. Phys.
100
(
11
),
114519
(
2006
).
12.
M. V. S.
Chandrashekhar
,
C. I.
Thomas
,
H.
Li
,
M. G.
Spencer
, and
A.
Lal
,
Appl. Phys. Lett.
88
(
3
),
033506
(
2006
).
13.
T.
Wacharasindhu
,
B. R.
Nullmeyer
,
J. W.
Kwon
,
J. D.
Robertson
, and
A. Y.
Garnov
,
J. Microelectromech. Syst.
23
(
1
),
56
(
2014
).
14.
C.
Thomas
,
S.
Portnoff
, and
M. G.
Spencer
,
Appl. Phys. Lett.
108
(
1
),
013505
(
2016
).
15.
G.
Gui
,
K.
Zhang
,
J. P.
Blanchard
, and
Z.
Ma
,
Appl. Radiat. Isot.
107
,
272
(
2016
).
16.
H.
Chen
,
L.
Jiang
, and
X.
Chen
,
J. Phys. D
44
(
21
),
215303
(
2011
).
17.
Y. S. H.
Guo
,
Y.
Zhang
,
Y.
Zhang
, and
J.
Han
, in
2011 International Conference of Electron Devices and Solid-State Circuits (EDSSC)
(
2011
), p.
1
.
18.
Z.
Cheng
,
Z.
Zhao
,
H.
San
, and
X.
Chen
, in
IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)
(
2011
), p.
1036
.
19.
Z.
Song
,
C.
Zhao
,
F.
Liao
, and
Y.
Zhao
,
ACS Appl. Mater. Interfaces
11
(
36
),
32969
(
2019
).
20.
Y.
Liu
,
X.
Tang
,
Z.
Xu
,
L.
Hong
,
H.
Wang
,
M.
Liu
, and
D.
Chen
,
J. Radioanal. Nucl. Chem.
304
(
2
),
517
(
2015
).
21.
X.
Tang
,
D.
Ding
,
Y.
Liu
, and
D.
Chen
,
Sci. China Technol. Sci.
55
(
4
),
990
(
2012
).
22.
Y.
Liu
,
J.
Lu
,
X.
Li
,
X.
Xu
,
R.
He
, and
H.
Wang
,
Nucl. Sci. Tech.
29
(
11
),
168
(
2018
).
23.
F.
Bouzid
,
F.
Pezzimenti
, and
L.
Dehimi
,
Nucl. Instrum. Methods Phys. Res. Sect. A
969
,
164103
(
2020
).
24.
H.
Guo
,
H.
Yang
, and
Y.
Zhang
, in
IEEE 20th International Conference on Micro Electro Mechanical Systems
(
2007
), p.
867
.
25.
Z.
Cheng
,
H.
San
,
X.
Chen
,
B.
Liu
, and
Z.
Feng
,
Chin. Phys. Lett.
28
(
7
),
078401
(
2011
).
26.
T. R.
Alam
and
M. A.
Pierson
,
J. Energy Power Sources
3
(
1
),
11
(
2016
).
27.
S. M.
Sze
and
K. N.
Kwok
,
Physics of Semiconductor Devices
, 3rd ed. (
Wiley
,
New Jersey
,
2007
).
28.
G.
Wang
,
R.
Hu
,
H.
Wei
,
H.
Zhang
,
Y.
Yang
,
X.
Xiong
,
G.
Liu
, and
S.
Luo
,
Appl. Radiat. Isot.
68
(
12
),
2214
(
2010
).
29.
Y.
Liu
,
X.
Tang
,
Z.
Xu
,
L.
Hong
, and
D.
Chen
,
Appl. Radiat. Isot.
94
,
152
(
2014
).
30.
A. V.
Sachenko
,
A. I.
Shkrebtii
,
R. M.
Korkishko
,
V. P.
Kostylyov
,
M. R.
Kulish
, and
I. O.
Sokolovskyi
,
Solid-State Electron.
111
,
147
(
2015
).
31.
G.
Zuo
,
J.
Zhou
, and
G.
Ke
,
Appl. Radiat. Isot.
82
,
119
(
2013
).
32.
M. S.
Tyagi
and
R.
Van Overstraeten
,
Solid State Electron.
26
(
6
),
577
(
1983
).
33.
J. S.
Blakemore
and
J. S.
Blakemore
,
J. Appl. Phys.
53
(
10
),
r123
(
1982
).
34.
L.
Zhang
,
H.
Cheng
,
X.
Hu
, and
X.
Xu
,
Superlattices Microstruct.
123
,
60
(
2018
).
35.
K.
Kumakura
,
T.
Makimoto
,
N.
Kobayashi
,
T.
Hashizume
,
T.
Fukui
, and
H.
Hasegawa
,
Appl. Phys. Lett.
86
(
5
),
052105
(
2005
).
36.
D.
Deng
,
D.
Zhao
,
J.
Wang
,
H.
Yang
, and
C.
Wen
,
Rare Met.
26
(
3
),
271
(
2007
).
37.
B.
Liu
,
K. P.
Chen
,
N. P.
Kherani
,
S.
Zukotynski
, and
A. B.
Antoniazzi
,
Appl. Phys. Lett.
92
(
8
),
083511
(
2008
).
You do not currently have access to this content.