On-chip quantum photonics is a promising route toward the implementation of complex photonic architectures on a small footprint. Therefore, different photonic components demonstrated for off-chip operation must be realized in an integrated manner. An essential building block for the realization of this goal is the integration of efficient on-demand single-photon sources within waveguide circuits. Here, we address this challenge by demonstrating the Purcell-enhanced single-photon emission from an In(Ga)As quantum dot coupled to a high-Q cavity-waveguide device. The combination with a piezoelectric actuator further enables the strain-induced emission energy tuning of the quantum dot as well as the cavity mode. We observe wavelength shifts up to 0.85 nm for the quantum dot, with a differential tuning factor of four between emitter and cavity. This allows for the full compensation of the spectral mismatch between a selected quantum dot and the cavity resonance. A nearly twofold enhancement of the spontaneous emission rate is observed at resonance with the on-demand generation of single photons. This demonstration of a strain-tunable emitter in a waveguide-coupled cavity device represents an essential building block for large scale quantum photonic circuits, especially if combined in the future with miniaturization approaches based on recently developed micromachined piezoelectric actuators.

1.
J.
Wang
,
F.
Sciarrino
,
A.
Laing
, and
M. G.
Thompson
, “
Integrated photonic quantum technologies
,”
Nat. Photonics
14
,
273
284
(
2020
).
2.
S.
Slussarenko
and
G. J.
Pryde
, “
Photonic quantum information processing: A concise review
,”
Appl. Phys. Rev.
6
,
041303
(
2019
).
3.
Quantum Dots for Quantum Information Technologies
, edited by
P.
Michler
(
Springer International Publishing
,
2017
).
4.
S.
Bogdanov
,
M. Y.
Shalaginov
,
A.
Boltasseva
, and
V. M.
Shalaev
, “
Material platforms for integrated quantum photonics
,”
Opt. Mater. Express
7
,
111
132
(
2017
).
5.
J.-H.
Kim
,
S.
Aghaeimeibodi
,
J.
Carolan
,
D.
Englund
, and
E.
Waks
, “
Hybrid integration methods for on-chip quantum photonics
,”
Optica
7
,
291
308
(
2020
).
6.
I.
Aharonovich
,
D.
Englund
, and
M.
Toth
, “
Solid-state single-photon emitters
,”
Nat. Photonics
10
,
631
641
(
2016
).
7.
P.
Senellart
,
G.
Solomon
, and
A.
White
, “
High-performance semiconductor quantum-dot single-photon sources
,”
Nat. Nanotechnol.
12
,
1026
1039
(
2017
).
8.
M. A.
Pooley
,
D. J. P.
Ellis
,
R. B.
Patel
,
A. J.
Bennett
,
K. H. A.
Chan
,
I.
Farrer
,
D. A.
Ritchie
, and
A. J.
Shields
, “
Controlled-NOT gate operating with single photons
,”
Appl. Phys. Lett.
100
,
211103
(
2012
).
9.
O.
Gazzano
,
M. P.
Almeida
,
A. K.
Nowak
,
S. L.
Portalupi
,
A.
Lemaître
,
I.
Sagnes
,
A. G.
White
, and
P.
Senellart
, “
Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source
,”
Phys. Rev. Lett.
110
,
250501
(
2013
).
10.
Y.-M.
He
,
Y.
He
,
Y.-J.
Wei
,
D.
Wu
,
M.
Atatüre
,
C.
Schneider
,
S.
Höfling
,
M.
Kamp
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
On-demand semiconductor single-photon source with near-unity indistinguishability
,”
Nat. Nanotechnol.
8
,
213
217
(
2013
).
11.
I.
Schwartz
,
D.
Cogan
,
E. R.
Schmidgall
,
Y.
Don
,
L.
Gantz
,
O.
Kenneth
,
N. H.
Lindner
, and
D.
Gershoni
, “
Deterministic generation of a cluster state of entangled photons
,”
Science
354
,
434
(
2016
).
12.
H.
Wang
,
Y.
He
,
Y.-H.
Li
,
Z.-E.
Su
,
B.
Li
,
H.-L.
Huang
,
X.
Ding
,
M.-C.
Chen
,
C.
Liu
,
J.
Qin
,
J.-P.
Li
,
Y.-M.
He
,
C.
Schneider
,
M.
Kamp
,
C.-Z.
Peng
,
S.
Höfling
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
High-efficiency multiphoton boson sampling
,”
Nat. Photonics
11
,
361
365
(
2017
).
13.
H.
Wang
,
J.
Qin
,
X.
Ding
,
M.-C.
Chen
,
S.
Chen
,
X.
You
,
Y.-M.
He
,
X.
Jiang
,
L.
You
,
Z.
Wang
,
C.
Schneider
,
J. J.
Renema
,
S.
Höfling
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space
,”
Phys. Rev. Lett.
123
,
250503
(
2019
).
14.
C. P.
Dietrich
,
A.
Fiore
,
M. G.
Thompson
,
M.
Kamp
, and
S.
Höfling
, “
GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits
,”
Laser Photonics Rev.
10
,
870
894
(
2016
).
15.
S.
Hepp
,
M.
Jetter
,
S. L.
Portalupi
, and
P.
Michler
, “
Semiconductor quantum dots for integrated quantum photonics
,”
Adv. Quantum Technol.
2
,
1900020
(
2019
).
16.
M.
Arcari
,
I.
Söllner
,
A.
Javadi
,
S.
Lindskov Hansen
,
S.
Mahmoodian
,
J.
Liu
,
H.
Thyrrestrup
,
E. H.
Lee
,
J. D.
Song
,
S.
Stobbe
, and
P.
Lodahl
, “
Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide
,”
Phys. Rev. Lett.
113
,
093603
(
2014
).
17.
N.
Prtljaga
,
R. J.
Coles
,
J.
O'Hara
,
B.
Royall
,
E.
Clarke
,
A. M.
Fox
, and
M. S.
Skolnick
, “
Monolithic integration of a quantum emitter with a compact on-chip beam-splitter
,”
Appl. Phys. Lett.
104
,
231107
(
2014
).
18.
G.
Kiršanskė
,
H.
Thyrrestrup
,
R. S.
Daveau
,
C. L.
Dreeßen
,
T.
Pregnolato
,
L.
Midolo
,
P.
Tighineanu
,
A.
Javadi
,
S.
Stobbe
,
R.
Schott
,
A.
Ludwig
,
A. D.
Wieck
,
S. I.
Park
,
J. D.
Song
,
A. V.
Kuhlmann
,
I.
Söllner
,
M. C.
Löbl
,
R. J.
Warburton
, and
P.
Lodahl
, “
Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide
,”
Phys. Rev. B
96
,
165306
(
2017
).
19.
F.
Liu
,
A. J.
Brash
,
J.
O'Hara
,
L. M. P. P.
Martins
,
C. L.
Phillips
,
R. J.
Coles
,
B.
Royall
,
E.
Clarke
,
C.
Bentham
,
N.
Prtljaga
,
I. E.
Itskevich
,
L. R.
Wilson
,
M. S.
Skolnick
, and
A. M.
Fox
, “
High Purcell factor generation of indistinguishable on-chip single photons
,”
Nat. Nanotechnol.
13
,
835
840
(
2018
).
20.
P.
Lodahl
, “
Quantum-dot based photonic quantum networks
,”
Quantum Sci. Technol.
3
,
013001
(
2018
).
21.
B.
Rigal
,
K.
Joanesarson
,
A.
Lyasota
,
C.
Jarlov
,
B.
Dwir
,
A.
Rudra
,
I.
Kulkova
, and
E.
Kapon
, “
Propagation losses in photonic crystal waveguides: Effects of band tail absorption and waveguide dispersion
,”
Opt. Express
25
,
28908
28913
(
2017
).
22.
C.
Papon
,
X.
Zhou
,
H.
Thyrrestrup
,
Z.
Liu
,
S.
Stobbe
,
R.
Schott
,
A. D.
Wieck
,
A.
Ludwig
,
P.
Lodahl
, and
L.
Midolo
, “
Nanomechanical single-photon routing
,”
Optica
6
,
524
530
(
2019
).
23.
U.
Rengstl
,
M.
Schwartz
,
T.
Herzog
,
F.
Hargart
,
M.
Paul
,
S. L.
Portalupi
,
M.
Jetter
, and
P.
Michler
, “
On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in GaAs rib waveguides
,”
Appl. Phys. Lett.
107
,
021101
(
2015
).
24.
K. D.
Jöns
,
U.
Rengstl
,
M.
Oster
,
F.
Hargart
,
M.
Heldmaier
,
S.
Bounouar
,
S. M.
Ulrich
,
M.
Jetter
, and
P.
Michler
, “
Monolithic on-chip integration of semiconductor waveguides, beamsplitters and single-photon sources
,”
J. Phys. D
48
,
085101
(
2015
).
25.
M.
Schwartz
,
E.
Schmidt
,
U.
Rengstl
,
F.
Hornung
,
S.
Hepp
,
S. L.
Portalupi
,
K.
llin
,
M.
Jetter
,
M.
Siegel
, and
P.
Michler
, “
Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor-superconductor platform
,”
Nano Lett.
18
,
6892
6897
(
2018
).
26.
Ł.
Dusanowski
,
S.-H.
Kwon
,
C.
Schneider
, and
S.
Höfling
, “
Near-unity indistinguishability single photon source for large-scale integrated quantum optics
,”
Phys. Rev. Lett.
122
,
173602
(
2019
).
27.
S.
Hepp
,
S.
Bauer
,
F.
Hornung
,
M.
Schwartz
,
S. L.
Portalupi
,
M.
Jetter
, and
P.
Michler
, “
Bragg grating cavities embedded into nano-photonic waveguides for Purcell enhanced quantum dot emission
,”
Opt. Express
26
,
30614
30622
(
2018
).
28.
Ł.
Dusanowski
,
D.
Köck
,
E.
Shin
,
S.-H.
Kwon
,
C.
Schneider
, and
S.
Höfling
, “
Purcell-enhanced and indistinguishable single-photon generation from quantum dots coupled to on-chip integrated ring resonators
,”
Nano Lett.
20
,
6357
6363
(
2020
).
29.
A.
Badolato
,
K.
Hennessy
,
M.
Atatüre
,
J.
Dreiser
,
E.
Hu
,
P. M.
Petroff
, and
A.
Imamoğlu
, “
Deterministic coupling of single quantum dots to single nanocavity modes
,”
Science
308
,
1158
1161
(
2005
).
30.
L.
Sapienza
,
M.
Davanço
,
A.
Badolato
, and
K.
Srinivasan
, “
Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission
,”
Nat. Commun.
6
,
7833
(
2015
).
31.
M.
Gschrey
,
A.
Thoma
,
P.
Schnauber
,
M.
Seifried
,
R.
Schmidt
,
B.
Wohlfeil
,
L.
Krüger
,
J. H.
Schulze
,
T.
Heindel
,
S.
Burger
,
F.
Schmidt
,
A.
Strittmatter
,
S.
Rodt
, and
S.
Reitzenstein
, “
Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography
,”
Nat. Commun.
6
,
7662
(
2015
).
32.
S.
Kolatschek
,
S.
Hepp
,
M.
Sartison
,
M.
Jetter
,
P.
Michler
, and
S. L.
Portalupi
, “
Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of in-situ optical lithography and electron-beam lithography
,”
J. Appl. Phys.
125
,
045701
(
2019
).
33.
J. P.
Reithmaier
,
G.
Sek
,
A.
Löffler
,
C.
Hofmann
,
S.
Kuhn
,
S.
Reitzenstein
,
L. V.
Keldysh
,
V. D.
Kulakovskii
,
T. L.
Reinecke
, and
A.
Forchel
, “
Strong coupling in a single quantum dot-semiconductor microcavity system
,”
Nature
432
,
197
200
(
2004
).
34.
A.
Faraon
,
D.
Englund
,
I.
Fushman
,
J.
Vuckovic
,
N.
Stoltz
, and
P.
Petroff
, “
Local quantum dot tuning on photonic crystal chips
,”
Appl. Phys. Lett.
90
,
213110
(
2007
).
35.
A.
Laucht
,
F.
Hofbauer
,
N.
Hauke
,
J.
Angele
,
S.
Stobbe
,
M.
Kaniber
,
G.
Böhm
,
P.
Lodahl
,
M.-C.
Amann
, and
J. J.
Finley
, “
Electrical control of spontaneous emission and strong coupling for a single quantum dot
,”
New J. Phys.
11
,
023034
(
2009
).
36.
N.
Somaschi
,
V.
Giesz
,
L.
De Santis
,
J. C.
Loredo
,
M. P.
Almeida
,
G.
Hornecker
,
S. L.
Portalupi
,
T.
Grange
,
C.
Antón
,
J.
Demory
,
C.
Gómez
,
I.
Sagnes
,
N. D.
Lanzillotti-Kimura
,
A.
Lemaítre
,
A.
Auffeves
,
A. G.
White
,
L.
Lanco
, and
P.
Senellart
, “
Near-optimal single-photon sources in the solid state
,”
Nat. Photonics
10
,
340
345
(
2016
).
37.
H.
Kim
,
T. C.
Shen
,
D.
Sridharan
,
G. S.
Solomon
, and
E.
Waks
, “
Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity
,”
Appl. Phys. Lett.
98
,
091102
(
2011
).
38.
J.
Martín-Sánchez
,
R.
Trotta
,
A.
Mariscal
,
R.
Serna
,
G.
Piredda
,
S.
Stroj
,
J.
Edlinger
,
C.
Schimpf
,
J.
Aberl
,
T.
Lettner
,
J.
Wildmann
,
H.
Huang
,
X.
Yuan
,
D.
Ziss
,
J.
Stangl
, and
A.
Rastelli
, “
Strain-tuning of the optical properties of semiconductor nanomaterials by integration onto piezoelectric actuators
,”
Semicond. Sci. Technol.
33
,
013001
(
2018
).
39.
J.
Yang
,
M.
Zopf
, and
F.
Ding
, “
Strain tunable quantum dot based non-classical photon sources
,”
J. Semicond.
41
,
011901
(
2020
).
40.
A.
Rastelli
,
F.
Ding
,
J. D.
Plumhof
,
S.
Kumar
,
R.
Trotta
,
C.
Deneke
,
A.
Malachias
,
P.
Atkinson
,
E.
Zallo
,
T.
Zander
,
A.
Herklotz
,
R.
Singh
,
V.
Krápek
,
J. R.
Schröter
,
S.
Kiravittaya
,
M.
Benyoucef
,
R.
Hafenbrak
,
K. D.
Jöns
,
D. J.
Thurmer
,
D.
Grimm
,
G.
Bester
,
K.
Dörr
,
P.
Michler
, and
O. G.
Schmidt
, “
Controlling quantum dot emission by integration of semiconductor nanomembranes onto piezoelectric actuators
,”
Phys. Status Solidi B
249
,
687
696
(
2012
).
41.
J. D.
Plumhof
,
V.
Křápek
,
F.
Ding
,
K. D.
Jöns
,
R.
Hafenbrak
,
P.
Klenovský
,
A.
Herklotz
,
K.
Dörr
,
P.
Michler
,
A.
Rastelli
, and
O. G.
Schmidt
, “
Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/AlxGa1−xAs and InxGa1−xAs/GaAs quantum dots
,”
Phys. Rev. B
83
,
121302
(
2011
).
42.
D.
Huber
,
M.
Reindl
,
S. F.
Covre da Silva
,
C.
Schimpf
,
J.
Martín-Sánchez
,
H.
Huang
,
G.
Piredda
,
J.
Edlinger
,
A.
Rastelli
, and
R.
Trotta
, “
Strain-tunable GaAs quantum dot: A nearly dephasing-free source of entangled photon pairs on demand
,”
Phys. Rev. Lett.
121
,
033902
(
2018
).
43.
X.
Yuan
,
F.
Weyhausen-Brinkmann
,
J.
Martín-Sánchez
,
G.
Piredda
,
V.
Krápek
,
Y.
Huo
,
H.
Huang
,
C.
Schimpf
,
O. G.
Schmidt
,
J.
Edlinger
,
G.
Bester
,
R.
Trotta
, and
A.
Rastelli
, “
Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics
,”
Nat. Commun.
9
,
3058
(
2018
).
44.
J.
Beetz
,
T.
Braun
,
C.
Schneider
,
S.
Höfling
, and
M.
Kamp
, “
Anisotropic strain-tuning of quantum dots inside a photonic crystal cavity
,”
Semicond. Sci. Technol.
28
,
122002
(
2013
).
45.
S.
Sun
,
H.
Kim
,
G. S.
Solomon
, and
E.
Waks
, “
Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity
,”
Appl. Phys. Lett.
103
,
151102
(
2013
).
46.
M.
Moczala-Dusanowska
,
L.
Dusanowski
,
S.
Gerhardt
,
Y. M.
He
,
M.
Reindl
,
A.
Rastelli
,
R.
Trotta
,
N.
Gregersen
,
S.
Höfling
, and
C.
Schneider
, “
Strain-tunable single-photon source based on a quantum dot-micropillar system
,”
ACS Photonics
6
,
2025
2031
(
2019
).
47.
T.
Zander
,
A.
Herklotz
,
S.
Kiravittaya
,
M.
Benyoucef
,
F.
Ding
,
P.
Atkinson
,
S.
Kumar
,
J. D.
Plumhof
,
K.
Dörr
,
A.
Rastelli
, and
O. G.
Schmidt
, “
Epitaxial quantum dots in stretchable optical microcavities
,”
Opt. Express
17
,
22452
22461
(
2009
).
48.
A. W.
Elshaari
,
E.
Büyüközer
,
I. E.
Zadeh
,
T.
Lettner
,
P.
Zhao
,
E.
Schöll
,
S.
Gyger
,
M. E.
Reimer
,
D.
Dalacu
,
P. J.
Poole
,
K. D.
Jöns
, and
V.
Zwiller
, “
Strain-tunable quantum integrated photonics
,”
Nano Lett.
18
,
7969
7976
(
2018
).
49.
J. Q.
Grim
,
A. S.
Bracker
,
M.
Zalalutdinov
,
S. G.
Carter
,
A. C.
Kozen
,
M.
Kim
,
C. S.
Kim
,
J. T.
Mlack
,
M.
Yakes
,
B.
Lee
, and
D.
Gammon
, “
Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance
,”
Nat. Mater.
18
,
963
969
(
2019
).
50.
M.
Palamaru
and
P.
Lalanne
, “
Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion
,”
Appl. Phys. Lett.
78
,
1466
1468
(
2001
).
51.
H.
Lin
,
C.-H.
Lin
,
W.-C.
Lai
,
Y.-S.
Lee
,
S.-D.
Lin
, and
W.-H.
Chang
, “
Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities
,”
Phys. Rev. B
84
,
201301
(
2011
).
52.
T.
Herzog
,
M.
Sartison
,
S.
Kolatschek
,
S.
Hepp
,
A.
Bommer
,
C.
Pauly
,
F.
Mücklich
,
C.
Becher
,
M.
Jetter
,
S. L.
Portalupi
, and
P.
Michler
, “
Pure single-photon emission from In(Ga)As QDs in a tunable fiber-based external mirror microcavity
,”
Quantum Sci. Technol.
3
,
034009
(
2018
).
53.
Y.-M.
He
,
J.
Liu
,
S.
Maier
,
M.
Emmerling
,
S.
Gerhardt
,
M.
Davanço
,
K.
Srinivasan
,
C.
Schneider
, and
S.
Höfling
, “
Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging
,”
Optica
4
,
802
808
(
2017
).
54.
T.
Pregnolato
,
X.-L.
Chu
,
T.
Schröder
,
R.
Schott
,
A. D.
Wieck
,
A.
Ludwig
,
P.
Lodahl
, and
N.
Rotenberg
, “
Deterministic positioning of nanophotonic waveguides around single self-assembled quantum dots
,”
APL Photonics
5
,
086101
(
2020
).
55.
P.
Schnauber
,
J.
Schall
,
S.
Bounouar
,
T.
Höhne
,
S.-I.
Park
,
G.-H.
Ryu
,
T.
Heindel
,
S.
Burger
,
J.-D.
Song
,
S.
Rodt
, and
S.
Reitzenstein
, “
Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography
,”
Nano Lett.
18
,
2336
2342
(
2018
).
56.
J.
Liu
,
M. I.
Davanço
,
L.
Sapienza
,
K.
Konthasinghe
,
J. V.
De Miranda Cardoso
,
J. D.
Song
,
A.
Badolato
, and
K.
Srinivasan
, “
Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters
,”
Rev. Sci. Instrum.
88
,
023116
(
2017
).
57.
M.
Schwartz
,
U.
Rengstl
,
T.
Herzog
,
M.
Paul
,
J.
Kettler
,
S. L.
Portalupi
,
M.
Jetter
, and
P.
Michler
, “
Generation, guiding and splitting of triggered single photons from a resonantly excited quantum dot in a photonic circuit
,”
Opt. Express
24
,
3089
3094
(
2016
).
You do not currently have access to this content.