The advent of acceptor-type doping of β-Ga2O3 through ion-implantation of nitrogen has opened a new design space for junction-type devices with estimated breakdown voltages in excess of a few kVs. However, the presence of deep states due to intrinsic defects in β-Ga2O3 and implantation damage could be detrimental to the performance and reliability of such devices. We give a phenomenological description and experimental demonstration of the effects of nitrogen implantation in a buried blocking layer on the performance of transistors. The partial activation of acceptor-like states in the buried implanted region has been revealed and estimated to be ∼20% through a junction spectroscopic technique involving substrate-bias and sub-bandgap illumination, which remains elusive to standard characterization techniques. The characterization technique, along with a space-charge model of the channel and band model of the buried implanted layer, has revealed the presence of photosensitive mid-bandgap (∼2.47 eV below the conduction band) and tail states near the valence band edge of nitrogen-implanted β-Ga2O3.

1.
M.
Higashiwaki
and
G. H.
Jessen
, “
Guest editorial: The dawn of gallium oxide microelectronics
,”
Appl. Phys. Lett.
112
,
060401
(
2018
).
2.
J.
Zhang
,
J.
Shi
,
D.-C.
Qi
,
L.
Chen
, and
K. H. L.
Zhang
, “
Recent progress on the electronic structure, defect, and doping properties of Ga2O3
,”
APL Mater.
8
,
020906
(
2020
).
3.
S. J.
Pearton
,
F.
Ren
,
M.
Tadjer
, and
J.
Kim
, “
Perspective: Ga2o3 for ultra-high power rectifiers and MOSFETs
,”
J. Appl. Phys.
124
,
220901
(
2018
).
4.
M. H.
Wong
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Enhancement-mode β-Ga2O3 current aperture vertical MOSFETs with n-ion-implanted blocker
,”
IEEE Electron Device Lett.
41
,
296
299
(
2020
).
5.
Z.
Hu
,
K.
Nomoto
,
W.
Li
,
N.
Tanen
,
K.
Sasaki
,
A.
Kuramata
,
T.
Nakamura
,
D.
Jena
, and
H. G.
Xing
, “
Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kv
,”
IEEE Electron Device Lett.
39
,
869
872
(
2018
).
6.
Z.
Xia
,
H.
Xue
,
C.
Joishi
,
J.
Mcglone
,
N. K.
Kalarickal
,
S. H.
Sohel
,
M.
Brenner
,
A.
Arehart
,
S.
Ringel
,
S.
Lodha
,
W.
Lu
, and
S.
Rajan
, “
β-Ga2O3 delta-doped field-effect transistors with current gain cutoff frequency of 27 Ghz
,”
IEEE Electron Device Lett.
40
,
1052
1055
(
2019
).
7.
S.
Sharma
,
K.
Zeng
,
S.
Saha
, and
U.
Singisetti
, “
Field-plated lateral Ga2O3 MOSFETs with polymer passivation and 8.03 kv breakdown voltage
,”
IEEE Electron Device Lett.
41
,
836
839
(
2020
).
8.
M. H.
Wong
,
C.-H.
Lin
,
A.
Kuramata
,
S.
Yamakoshi
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Acceptor doping of β-Ga2O3 by mg and n ion implantations
,”
Appl. Phys. Lett.
113
,
102103
(
2018
).
9.
K.
Tetzner
,
A.
Thies
,
E.
Bahat Treidel
,
F.
Brunner
,
G.
Wagner
, and
J.
Wurfl
, “
Selective area isolation of β-Ga2O3 using multiple energy nitrogen ion implantation
,”
Appl. Phys. Lett.
113
,
172104
(
2018
).
10.
H.
Peelaers
,
J. L.
Lyons
,
J. B.
Varley
, and
C. G.
Van de Walle
, “
Deep acceptors and their diffusion in Ga2O3
,”
APL Mater.
7
,
022519
(
2019
).
11.
M. H.
Wong
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Current aperture vertical β-Ga2O3 MOSFETs fabricated by N- and Si-ion implantation doping
,”
IEEE Electron Device Lett.
40
,
431
434
(
2019
).
12.
Z.
Zhang
,
E.
Farzana
,
A. R.
Arehart
, and
S. A.
Ringel
, “
Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy
,”
Appl. Phys. Lett.
108
,
052105
(
2016
).
13.
H.
Murakami
,
K.
Nomura
,
K.
Goto
,
K.
Sasaki
,
K.
Kawara
,
Q. T.
Thieu
,
R.
Togashi
,
Y.
Kumagai
,
M.
Higashiwaki
,
A.
Kuramata
,
S.
Yamakoshi
,
B.
Monemar
, and
A.
Koukitu
, “
Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy
,”
Appl. Phys. Express
8
,
015503
(
2015
).
14.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts
,”
Appl. Phys. Express
6
,
086502
(
2013
).
15.
M. D.
McCluskey
, “
Point defects in Ga2O3
,”
J. Appl. Phys.
127
,
101101
(
2020
).
16.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Oxygen vacancies and donor impurities in β-Ga2O3
,”
Appl. Phys. Lett.
97
,
142106
(
2010
).
17.
L.
Dong
,
R.
Jia
,
B.
Xin
,
B.
Peng
, and
Y.
Zhang
, “
Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3
,”
Sci. Rep.
7
,
40160
(
2017
).
18.
J. B.
Varley
,
H.
Peelaers
,
A.
Janotti
, and
C. G. V.
de Walle
, “
Hydrogenated cation vacancies in semiconducting oxides
,”
J. Phys.: Condens. Matter
23
,
334212
(
2011
).
19.
J. F.
Mcglone
,
Z.
Xia
,
Y.
Zhang
,
C.
Joishi
,
S.
Lodha
,
S.
Rajan
,
S. A.
Ringel
, and
A. R.
Arehart
, “
Trapping effects in Si δ -doped β-Ga2O3 mesfets on an Fe-doped β-Ga2O3 substrate
,”
IEEE Electron Device Lett.
39
,
1042
1045
(
2018
).
20.
J. F.
McGlone
,
Z.
Xia
,
C.
Joishi
,
S.
Lodha
,
S.
Rajan
,
S.
Ringel
, and
A. R.
Arehart
, “
Identification of critical buffer traps in Si δ-doped β-Ga2O3 MESFETs
,”
Appl. Phys. Lett.
115
,
153501
(
2019
).
21.
M. M.
Islam
,
D.
Rana
,
A.
Hernandez
,
M.
Haseman
, and
F. A.
Selim
, “
Study of trap levels in β-Ga2O3 by thermoluminescence spectroscopy
,”
J. Appl. Phys.
125
,
055701
(
2019
).
22.
A. T.
Neal
,
S.
Mou
,
R.
Lopez
,
J. V.
Li
,
D. B.
Thomson
,
K. D.
Chabak
, and
G. H.
Jessen
, “
Incomplete ionization of a 110 meV unintentional donor in β-Ga2O3 and its effect on power devices
,”
Sci. Rep.
7
,
13218
(
2017
).
23.
E.
Fabris
,
C.
De Santi
,
A.
Caria
,
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
D.
Jena
,
H. G.
Xing
,
G.
Meneghesso
,
E.
Zanoni
, and
M.
Meneghini
, “
Trapping and detrapping mechanisms in β-Ga2O3 vertical FinFETs investigated by electro-optical measurements
,”
IEEE Trans. Electron Devices
67
,
3954
3959
(
2020
).
24.
H.
Bae
,
J.
Noh
,
S.
Alghamdi
,
M.
Si
, and
P. D.
Ye
, “
Ultraviolet light-based current-voltage method for simultaneous extraction of donor- and acceptor-like interface traps in β-Ga2O3 FETs
,”
IEEE Electron Device Lett.
39
,
1708
1711
(
2018
).
25.
M. A.
Bhuiyan
,
H.
Zhou
,
R.
Jiang
,
E. X.
Zhang
,
D. M.
Fleetwood
,
P. D.
Ye
, and
T.
Ma
, “
Charge trapping in Al2O3/β-Ga2O3-based MOS capacitors
,”
IEEE Electron Device Lett.
39
,
1022
1025
(
2018
).
26.
T.
Onuma
,
Y.
Nakata
,
K.
Sasaki
,
T.
Masui
,
T.
Yamaguchi
,
T.
Honda
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
, “
Modeling and interpretation of UV and blue luminescence intensity in β-Ga2O3 by silicon and nitrogen doping
,”
J. Appl. Phys.
124
,
075103
(
2018
).
27.
L.
Dong
,
R.
Jia
,
C.
Li
,
B.
Xin
, and
Y.
Zhang
, “
Ab initio study of n-doped Ga2O3 with intrinsic defects: The structural, electronic and optical properties
,”
J. Alloys Compd.
712
,
379
385
(
2017
).
28.
E.
Farzana
,
M. F.
Chaiken
,
T. E.
Blue
,
A. R.
Arehart
, and
S. A.
Ringel
, “
Impact of deep level defects induced by high energy neutron radiation in β-Ga2O3
,”
APL Mater.
7
,
022502
(
2019
).
29.
A. Y.
Polyakov
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
A. A.
Vasilev
,
E. B.
Yakimov
,
A. V.
Chernykh
,
A. I.
Kochkova
,
P. B.
Lagov
,
Y. S.
Pavlov
,
O. F.
Kukharchuk
,
A. A.
Suvorov
,
N. S.
Garanin
,
I.-H.
Lee
,
M.
Xian
,
F.
Ren
, and
S. J.
Pearton
, “
Pulsed fast reactor neutron irradiation effects in Si doped n-type β-Ga2O3
,”
J. Phys. D: Appl. Phys.
53
,
274001
(
2020
).
30.
Silvaco, Inc., Atlas User's Manual, 2016.
You do not currently have access to this content.