The effect of lattice anisotropy on the diffusion of hydrogen (H)/deuterium (2H) in β-Ga2O3 was investigated using secondary ion mass spectrometry (SIMS) and hybrid-functional calculations. Concentration-depth profiles of 2H-implanted single crystals show that 2H can diffuse along the direction perpendicular to the (010) surface at temperatures as low as 300 °C, whereas diffusion along the direction perpendicular to the (-201) surface occurs only around 500 °C. For both directions, the evolution of the 2H concentration–depth profiles after heat treatments can be modeled by trap-limited diffusion. Moreover, the traps can be present in the as-received crystals or created during ion implantation. Comparison of the experimentally obtained binding energy for 2H to the trap (2.3 ± 0.2 eV) with the binding energies determined from first-principles calculations suggests that intrinsic point defects (e.g., VGaib) or defect complexes (e.g., VGa(2)VO(2)) are excellent candidates for the trap and will play a crucial role in the diffusion of H or 2H in β-Ga2O3.

1.
H. H.
Tippins
, “
Optical absorption and photoconductivity in the band edge of β-Ga2O3
,”
Phys. Rev.
140
,
A316
A319
(
1965
).
2.
M.
Orita
,
H.
Ohta
,
M.
Hirano
, and
H.
Hosono
, “
Deep-ultraviolet transparent conductive β-Ga2O3 thin films
,”
Appl. Phys. Lett.
77
,
4166
4168
(
2000
).
3.
C.
Janowitz
,
V.
Scherer
,
M.
Mohamed
,
A.
Krapf
,
H.
Dwelk
,
R.
Manzke
,
Z.
Galazka
,
R.
Uecker
,
K.
Irmscher
,
R.
Fornari
,
M.
Michling
,
D.
Schmeiser
,
J. R.
Weber
,
J. B.
Varley
, and
C. G. V.
de Walle
, “
Experimental electronic structure of In2O3 and Ga2O3
,”
New J. Phys.
13
,
085014
(
2011
).
4.
N.
Ueda
,
H.
Hosono
,
R.
Waseda
, and
H.
Kawazoe
, “
Anisotropy of electrical and optical properties in β-Ga2O3 single crystals
,”
Appl. Phys. Lett.
71
,
933
935
(
1997
).
5.
Y.
Usui
,
D.
Nakauchi
,
N.
Kawano
,
G.
Okada
,
N.
Kawaguchi
, and
T.
Yanagida
, “
Scintillation and optical properties of Sn-doped Ga2O3 single crystals
,”
J. Phys. Chem. Solids
117
,
36
41
(
2018
).
6.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
, “
High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth
,”
Jpn. J. Appl. Phys.
55
,
1202A2
(
2016
).
7.
S.
Ohira
and
N.
Arai
, “
Wet chemical etching behavior of β-Ga2O3 single crystal
,”
Phys. Status Solidi C
5
,
3116
3118
(
2008
).
8.
J.
Zhang
,
C.
Zia
,
Q.
Deng
,
W.
Xu
,
H.
Shi
,
F.
Wu
, and
J.
Xu
, “
Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3:Sn
,”
J. Phys. Chem. Solids
67
,
1656
1659
(
2006
).
9.
Z.
Galazka
,
R.
Uecker
,
D.
Klimm
,
K.
Irmscher
,
M.
Naumann
,
M.
Pietsch
,
A.
Kwasniewski
,
R.
Bertram
,
S.
Ganschow
, and
M.
Bickermann
, “
Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method
,”
ECS J. Solid State Sci. Technol.
6
,
Q3007
(
2017
).
10.
K.
Shimamura
,
E. G.
Víllora
,
T.
Ujiie
, and
K.
Aoki
, “
Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals
,”
Appl. Phys. Lett.
92
,
201914
(
2008
).
11.
E. G.
Víllora
,
K.
Shimamura
,
Y.
Yoshikawa
,
T.
Ujiie
, and
K.
Aoki
, “
Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping
,”
Appl. Phys. Lett.
92
,
202120
(
2008
).
12.
T.
Oshima
,
A.
Kaminaga
,
K.
Mukai
,
K.
Sasaki
,
T.
Masui
,
A.
Kuramata
,
S.
Yamakoshi
,
S.
Fujita
, and
A.
Ohtomo
, “
Formation of semi-insulating layers on semiconducting β-Ga2O3 single crystals by thermal oxidation
,”
Jpn. J. Appl. Phys.
52
,
051101
(
2013
).
13.
Z.
Galazka
, “
β-Ga2O3 for wide-bandgap electronics and optoelectronics
,”
Semicond. Sci. Technol.
33
,
113001
(
2018
).
14.
M.
Higashiwaki
and
G. H.
Jessen
, “
Guest editorial: The dawn of gallium oxide microelectronics
,”
Appl. Phys. Lett.
112
,
060401
(
2018
).
15.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
, IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
, “
A review of Ga2O3 materials, processing, and devices
,”
Appl. Phys. Rev.
5
,
011301
(
2018
).
16.
M.
Baldini
,
Z.
Galazka
, and
G.
Wagner
, “
Recent progress in the growth of β-Ga2O3 for power electronics applications
,”
Mater. Sci. Semicond. Process.
78
,
132
146
(
2018
).
17.
M. D.
McCluskey
, “
Point defects in Ga2O3
,”
J. Appl. Phys.
127
,
101101
(
2020
).
18.
M.
Tadjer
,
J.
Lyons
,
N.
Nepal
,
J. A.
Freitas
, Jr.
,
A.
Koehler
, and
G. M.
Foster
, “
Theory and characterization of doping and defects in β-Ga2O3
,”
ECS J. Solid State Sci. Technol.
8
,
Q3187
(
2019
).
19.
Z.
Galazka
,
K.
Irmscher
,
R.
Schewski
,
I. M.
Hanke
,
M.
Pietsch
,
S.
Ganschow
,
D.
Klimm
,
A.
Dittmar
,
A.
Fiedler
,
T.
Schroeder
, and
M.
Bickermann
, “
Czochralski-grown bulk β-Ga2O3 single crystals doped with mono-, di-, tri-, and tetravalent ions
,”
J. Cryst. Growth
529
,
125297
(
2020
).
20.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Oxygen vacancies and donor impurities in β-Ga2O3
,”
Appl. Phys. Lett.
97
,
142106
(
2010
).
21.
J. B.
Varley
,
H.
Peelaers
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Hydrogenated cation vacancies in semiconducting oxides
,”
J. Phys.: Condens. Matter
23
,
334212
(
2011
).
22.
P.
Weiser
,
M.
Stavola
,
W. B.
Fowler
,
Y.
Qin
, and
S.
Pearton
, “
Structure and vibrational properties of the dominant O-H center in β-Ga2O3
,”
Appl. Phys. Lett.
112
,
232104
(
2018
).
23.
Y.
Qin
,
M.
Stavola
,
W. B.
Fowler
,
P.
Weiser
, and
S. J.
Pearton
, “
Hydrogen centers in β-Ga2O3: Infrared spectroscopy and density functional theory
,”
ECS J. Solid State Sci. Technol.
8
,
Q3103
Q3110
(
2019
).
24.
J. R.
Ritter
,
J.
Huso
,
P. T.
Dickens
,
J. B.
Varley
,
K. G.
Lynn
, and
M. D.
McCluskey
, “
Compensation and hydrogen passivation of magnesium acceptors in β-Ga2O3
,”
Appl. Phys. Lett.
113
,
052101
(
2018
).
25.
J. R.
Ritter
,
K. G.
Lynn
, and
M. D.
McCluskey
, “
Iridium-related complexes in Czochralski-grown β-Ga2O3
,”
J. Appl. Phys.
126
,
225705
(
2019
).
26.
A.
Portoff
,
A.
Venzie
,
M.
Stavola
,
W. B.
Fowler
, and
S. J.
Pearton
, “
Determination of dielectric axes and transition moment directions in β-Ga2O3 from the polarization dependence of vibrational spectra
,”
J. Appl. Phys.
127
,
055702
(
2020
).
27.
M. E.
Ingebrigtsen
,
J. B.
Varley
,
A. Y.
Kuznetsov
,
B. G.
Svensson
,
G.
Alfieri
,
A.
Mihaila
,
U.
Badstübner
, and
L.
Vines
, “
Iron and intrinsic deep level states in Ga2O3
,”
Appl. Phys. Lett.
112
,
042104
(
2018
).
28.
M. E.
Ingebrigtsen
,
A. Y.
Kuznetsov
,
B. G.
Svensson
,
G.
Alfieri
,
A.
Mihaila
,
U.
Badstübner
,
A.
Perron
,
L.
Vines
, and
J. B.
Varley
, “
Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3
,”
APL Mater.
7
,
022510
(
2019
).
29.
C.
Zimmermann
,
E. F.
Verhoeven
,
Y. K.
Frodason
,
P. M.
Weiser
,
J. B.
Varley
, and
L.
Vines
, “
Formation and control of the E2* center in implanted β-Ga2O3 by reverse-bias and zero-bias annealing
,”
J. Phys. D
53
,
464001
(
2020
).
30.
J. F.
McGlone
,
Z.
Xia
,
C.
Joishi
,
S.
Lodha
,
S.
Rajan
,
S.
Ringel
, and
A. R.
Arehart
, “
Identification of critical buffer traps in Si δ-doped β-Ga2O3 MESFETs
,”
Appl. Phys. Lett.
115
,
153501
(
2019
).
31.
M. M.
Islam
,
M. O.
Liedke
,
D.
Winarski
,
M.
Butterling
,
A.
Wagner
,
P.
Hosemann
,
Y.
Wang
,
B.
Uberuaga
, and
F. A.
Selim
, “
Chemical manipulation of hydrogen induced high p-type and n-type conductivity in Ga2O3
,”
Sci. Rep.
10
,
6134
(
2020
).
32.
A. Y.
Polyakov
,
I.-H.
Lee
,
A.
Miakonkikh
,
A. V.
Chernykh
,
N. B.
Smirnov
,
I. V.
Shchemerov
,
A. I.
Kochkova
,
A. A.
Vasilev
, and
S. J.
Pearton
, “
Anisotropy of hydrogen plasma effects in bulk n-type β-Ga2O3
,”
J. Appl. Phys.
127
,
175702
(
2020
).
33.
S.
Ahn
,
F.
Ren
,
E.
Patrick
,
M. E.
Law
,
S. J.
Pearton
, and
A.
Kuramata
, “
Deuterium incorporation and diffusivity in plasma-exposed bulk Ga2O3
,”
Appl. Phys. Lett.
109
,
242108
(
2016
).
34.
S.
Ahn
,
F.
Ren
,
E.
Patrick
,
M. E.
Law
, and
S. J.
Pearton
, “
Thermal stability of implanted or plasma exposed deuterium in single crystal Ga2O3
,”
ECS J. Solid State Sci. Technol.
6
,
Q3026
Q3029
(
2017
).
35.
R.
Sharma
,
E.
Patrick
,
M. E.
Law
,
S.
Ahn
,
F.
Ren
,
S. J.
Pearton
, and
A.
Kuramata
, “
Extraction of migration energies and role of implant damage on thermal stability of deuterium in Ga2O3
,”
ECS J. Solid State Sci. Technol.
6
,
P794
P797
(
2017
).
36.
N. H.
Nickel
and
K.
Geilert
, “
Monatomic hydrogen diffusion in β-Ga2O3
,”
Appl. Phys. Lett.
116
,
242102
(
2020
).
37.
J. F.
Ziegler
and
J. P.
Biersack
, see http://www.srim.org for “
SRIM-2013 Software Package
” (
2013
).
38.
K. M.
Johansen
,
J. S.
Christensen
,
E. V.
Monakhov
,
A. Y.
Kuznetsov
, and
B. G.
Svensson
, “
Deuterium diffusion and trapping in hydrothermally grown single crystalline ZnO
,”
Appl. Phys. Lett.
93
,
152109
(
2008
).
39.
M. S.
Janson
,
A.
Hallén
,
M. K.
Linnarsson
, and
B. G.
Svensson
, “
Hydrogen diffusion, complex formation, and dissociation in acceptor-doped silicon carbide
,”
Phys. Rev. B
64
,
195202
(
2001
).
40.
FlexPDE
, see http://www.pdesolutions.com for “
Solutions inc
” (
2015
).
41.
Z.
Guo
,
A.
Verma
,
X.
Wu
,
F.
Sun
,
A.
Hickman
,
T.
Masui
,
A.
Kuramata
,
M.
Higashiwaki
,
D.
Jena
, and
T.
Luo
, “
Anisotropic thermal conductivity in single crystal β-gallium oxide
,”
Appl. Phys. Lett.
106
,
111909
(
2015
).
42.
H.
He
,
M. A.
Blanco
, and
R.
Pandey
, “
Electronic and thermodynamic properties of βGa2O3
,”
Appl. Phys. Lett.
88
,
261904
(
2006
).
43.
J. B.
Bates
,
J. C.
Wang
, and
R. A.
Perkins
, “
Mechanisms for hydrogen diffusion in TiO2
,”
Phys. Rev. B
19
,
4130
4139
(
1979
).
44.
K.
Momma
and
F.
Izumi
, “
VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
45.
A.
Karjalainen
,
V.
Prozheeva
,
K.
Simula
,
I.
Makkonen
,
V.
Callewaert
,
J. B.
Varley
, and
F.
Tuomisto
, “
Split Ga vacancies and the unusually strong anisotropy of positron annihilation spectra in β-Ga2O3
,”
Phys. Rev. B
102
,
195207
(
2020
).
46.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
, “
Influence of the exchange screening parameter on the performance of screened hybrid functionals
,”
J. Chem. Phys.
125
,
224106
(
2006
).
47.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
48.
G.
Kress
and
J.
Hafner
, “
Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements
,”
J. Phys.: Condens. Matter
6
,
8245
(
1994
).
49.
G.
Kress
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
50.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
51.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
52.
A.
Baldereschi
, “
Mean-value point in the Brillouin zone
,”
Phys. Rev. B
7
,
5212
5215
(
1973
).
53.
Y.
Kumagai
and
F.
Oba
, “
Electrostatics-based finite-size corrections for first-principles point defect calculations
,”
Phys. Rev. B
89
,
195205
(
2014
).
54.
C.
Freysoldt
,
J.
Neugebauer
, and
C. G.
Van de Walle
, “
Fully ab initio finite-size corrections for charged-defect supercell calculations
,”
Phys. Rev. Lett.
102
,
016402
(
2009
).
55.
H.-P.
Komsa
,
T. T.
Rantala
, and
A.
Pasquarello
, “
Finite-size supercell correction schemes for charged defect calculations
,”
Phys. Rev. B
86
,
045112
(
2012
).
56.
C.
Freysoldt
,
B.
Grabowski
,
T.
Hickel
,
J.
Neugebauer
,
G.
Kresse
,
A.
Janotti
, and
C. G.
Van de Walle
, “
First-principles calculations for point defects in solids
,”
Rev. Mod. Phys.
86
,
253
305
(
2014
).
57.
W. B.
Fowler
,
M.
Stavola
,
Y.
Qin
, and
P.
Weiser
, “
Trapping of multiple H atoms at the Ga(1) vacancy in β-Ga2O3
,”
Appl. Phys. Lett.
117
,
142101
(
2020
).
58.
C.
Zimmermann
,
E. F.
Verhoeven
,
P. M.
Weiser
,
Y. K.
Frodason
,
J. B.
Varley
,
I.
Kolevatov
, and
L.
Vines
, “
Hydrogenation of β-Ga2O3: Influence on deep-level defects
” (submitted).
59.
Y. K.
Frodason
,
K. M.
Johansen
,
L.
Vines
, and
J. B.
Varley
, “
Self-trapped hole and impurity-related broad luminescence in β-Ga2O3
,”
J. Appl. Phys.
127
,
075701
(
2020
).
You do not currently have access to this content.