Recent research in ultrawide-bandgap (UWBG) semiconductors has focused on traditional materials such as Ga2O3, AlGaN, AlN, cubic BN, and diamond; however, some materials exhibiting a single perovskite structure have been known to yield bandgaps above 3.4 eV, such as BaZrO3. In this work, we propose two materials to be added to the family of UWBG semiconductors: Ba2CaTeO6 exhibiting a double perovskite structure and Ba2K2Te2O9 with a triple perovskite structure. Using first-principles hybrid functional calculations, we predict the bandgaps of all the studied systems to be above 4.5 eV, with strong optical absorption in the ultraviolet region. Furthermore, we show that holes have a tendency to get trapped through lattice distortions in the vicinity of oxygen atoms, with an average trapping energy of 0.25 eV, potentially preventing the enhancement of p-type conductivity through traditional chemical doping.

1.
H.
Kroemer
, “
Nobel Lecture: Quasielectric fields and band offsets: Teaching electrons new tricks
,”
Rev. Mod. Phys.
73
,
783
793
(
2001
).
2.
J. Y.
Tsao
,
J.
Han
,
R. H.
Haitz
, and
P. M.
Pattison
, “
The blue LED Nobel Prize: Historical context, current scientific understanding, human benefit
,”
Ann. Phys.
527
,
A53
A61
(
2015
).
3.
S.
Nakamura
and
M. R.
Krames
, “
History of gallium-nitride-based light-emitting diodes for illumination
,”
Proc. IEEE
101
,
2211
2220
(
2013
).
4.
R.
Haitz
and
J. Y.
Tsao
, “
Solid-state lighting: ‘The case’ 10 years after and future prospects
,”
Phys. Status Solidi A
208
,
17
29
(
2011
).
5.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G.
Van de Walle
,
E.
Bellotti
,
C. L.
Chua
,
R.
Collazo
,
M. E.
Coltrin
,
J. A.
Cooper
,
K. R.
Evans
,
S.
Graham
,
T. A.
Grotjohn
,
E. R.
Heller
,
M.
Higashiwaki
,
M. S.
Islam
,
P. W.
Juodawlkis
,
M. A.
Khan
,
A. D.
Koehler
,
J. H.
Leach
,
U. K.
Mishra
,
R. J.
Nemanich
,
R. C. N.
Pilawa-Podgurski
,
J. B.
Shealy
,
Z.
Sitar
,
M. J.
Tadjer
,
A. F.
Witulski
,
M.
Wraback
, and
J. A.
Simmons
, “
Ultrawide-bandgap semiconductors: Research opportunities and challenges
,”
Adv. Electron. Mater.
4
,
1600501
(
2018
).
6.
B. J.
Baliga
, “
Semiconductors for high-voltage, vertical channel field-effect transistors
,”
J. Appl. Phys.
53
,
1759
1764
(
1982
).
7.
E.
Johnson
, “
Physical limitations on frequency and power parameters of transistors
,” in
1958 IRE International Convention Record
(
IEEE
,
New York
,
1965
), pp.
27
34
.
8.
J. B.
Varley
,
A.
Janotti
,
C.
Franchini
, and
C. G.
Van de Walle
, “
Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides
,”
Phys. Rev. B
85
,
081109
(
2012
).
9.
W.
Traiwattanapong
,
A.
Janotti
,
N.
Umezawa
,
S.
Limpijumnong
,
J.
T-Thienprasert
, and
P.
Reunchan
, “
Self-trapped holes in BaTiO3
,”
J. Appl. Phys.
124
,
085703
(
2018
).
10.
A.
Pandey
,
X.
Liu
,
Z.
Deng
,
W. J.
Shin
,
D. A.
Laleyan
,
K.
Mashooq
,
E. T.
Reid
,
E.
Kioupakis
,
P.
Bhattacharya
, and
Z.
Mi
, “
Enhanced doping efficiency of ultrawide band gap semiconductors by metal-semiconductor junction assisted epitaxy
,”
Phys. Rev. Mater.
3
,
053401
(
2019
).
11.
Z.
Galazka
,
D.
Klimm
,
K.
Irmscher
,
R.
Uecker
,
M.
Pietsch
,
R.
Bertram
,
M.
Naumann
,
M.
Albrecht
,
A.
Kwasniewski
,
R.
Schewski
, and
M.
Bickermann
, “
MgGa2O4 as a new wide bandgap transparent semiconducting oxide: Growth and properties of bulk single crystals
,”
Phys. Status Solidi A
212
,
1455
1460
(
2015
).
12.
E.
Chikoidze
,
C.
Sartel
,
I.
Madaci
,
H.
Mohamed
,
C.
Vilar
,
B.
Ballesteros
,
F.
Belarre
,
E.
del Corro
,
P.
Vales-Castro
,
G.
Sauthier
,
L.
Li
,
M.
Jennings
,
V.
Sallet
,
Y.
Dumont
, and
A.
Pérez-Tomás
, “
p-type ultrawide-band-gap spinel ZnGa2O4: New perspectives for energy electronics
,”
Cryst. Growth Des.
20
,
2535
2546
(
2020
).
13.
T.
Endo
,
Y.
Sato
,
H.
Takizawa
, and
M.
Shimada
, “
High-pressure synthesis of new compounds, ZnSiN2 and ZnGeN2 with distorted wurtzite structure
,”
J. Mater. Sci. Lett.
11
,
424
426
(
1992
).
14.
R.
Jinno
,
C. S.
Chang
,
T.
Onuma
,
Y.
Cho
,
S.-T.
Ho
,
M. C.
Cao
,
K.
Lee
,
V.
Protasenko
,
D. G.
Schlom
,
D. A.
Muller
,
H. G.
Xing
, and
D.
Jena
, “
Crystal orientation dictated epitaxy of ultrawide bandgap 5.4-8.6 eV α-(AlGa)2O3 on m-plane sapphire
,” arXiv:2007.03415 [physics.app-ph] (
2020
).
15.
Z. Y. A.
Balushi
,
K.
Wang
,
R. K.
Ghosh
,
R. A.
Vilá
,
S. M.
Eichfeld
,
J. D.
Caldwell
,
X.
Qin
,
Y.-C.
Lin
,
P. A.
DeSario
,
G.
Stone
,
S.
Subramanian
,
D. F.
Paul
,
R. M.
Wallace
,
S.
Datta
,
J. M.
Redwing
, and
J. A.
Robinson
, “
Two-dimensional gallium nitride realized via graphene encapsulation
,”
Nat. Mater.
15
,
1166
1171
(
2016
).
16.
I.
Levin
,
T. G.
Amos
,
S. M.
Bell
,
L.
Farber
,
T. A.
Vanderah
,
R. S.
Roth
, and
B. H.
Toby
, “
Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO3-CaZrO3 system
,”
J. Solid State Chem.
175
,
170
181
(
2003
).
17.
W.
Fu
,
Y.
Au
,
S.
Akerboom
, and
D.
IJdo
, “
Crystal structures and chemistry of double perovskites Ba2M(II)M'(VI)O6 (M=Ca, Sr, M'=Te, W, U)
,”
J. Solid State Chem.
181
,
2523
2529
(
2008
).
18.
M.
Weil
, “
Crystal structures of the triple perovskites Ba2K2Te2O9 and Ba2KNaTe2O9, and redetermination of the double perovskite Ba2CaTeO6
,”
Acta Crystallogr., Sect. E
74
,
1006
1009
(
2018
).
19.
P.
Blaha
,
K.
Schwarz
,
G.
Madsen
,
D.
Kvasnicka
,
J.
Luitz
,
R.
Laskowsk
,
F.
Tran
,
L.
Marks
, and
L.
Marks
,
WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties
(
Technical Universitat
,
2019
).
20.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
8215
(
2003
).
21.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
22.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
23.
X.
Chen
,
J.
Wang
,
C.
Huang
,
S.
Zhang
,
H.
Zhang
,
Z.
Li
, and
Z.
Zou
, “
Barium zirconate: A new photocatalyst for converting CO2 into hydrocarbons under UV irradiation
,”
Catal. Sci. Technol.
5
,
1758
1763
(
2015
).
24.
J.
Robertson
, “
Band offsets of wide-band-gap oxides and implications for future electronic devices
,”
J. Vac. Sci. Technol., B
18
,
1785
1791
(
2000
).
25.
P.
Haas
,
F.
Tran
, and
P.
Blaha
, “
Calculation of the lattice constant of solids with semilocal functionals
,”
Phys. Rev. B
79
,
085104
(
2009
).
26.
P.
Blaha
,
K.
Schwarz
,
F.
Tran
,
R.
Laskowski
,
G. K. H.
Madsen
, and
L. D.
Marks
, “
WIEN2k: An APW+lo program for calculating the properties of solids
,”
J. Chem. Phys.
152
,
074101
(
2020
).
27.
N.
Hernández-Haro
,
J.
Ortega-Castro
,
Y. B.
Martynov
,
R. G.
Nazmitdinov
, and
A.
Frontera
, “
DFT prediction of band gap in organic-inorganic metal halide perovskites: An exchange-correlation functional benchmark study
,”
Chem. Phys.
516
,
225
231
(
2019
).
28.
F.
Tran
,
J.
Doumont
,
L.
Kalantari
,
A. W.
Huran
,
M. A. L.
Marques
, and
P.
Blaha
, “
Semilocal exchange-correlation potentials for solid-state calculations: Current status and future directions
,”
J. Appl. Phys.
126
,
110902
(
2019
).
29.
S.
Guo
,
Z.
Zhu
,
X.
Hu
,
W.
Zhou
,
X.
Song
,
S.
Zhang
,
K.
Zhang
, and
H.
Zeng
, “
Ultrathin tellurium dioxide: Emerging direct bandgap semiconductor with high-mobility transport anisotropy
,”
Nanoscale
10
,
8397
8403
(
2018
).
30.
F.
Ji
,
J.
Klarbring
,
F.
Wang
,
W.
Ning
,
L.
Wang
,
C.
Yin
,
J. S. M.
Figueroa
,
C. K.
Christensen
,
M.
Etter
,
T.
Ederth
,
L.
Sun
,
S. I.
Simak
,
I. A.
Abrikosov
, and
F.
Gao
, “
Lead-free halide double perovskite Cs2AgBiBr6 with decreased bandgap
,”
Angew. Chem., Int. Ed.
59
,
15191
15194
(
2020
).
31.
S.
Körbel
,
M. A. L.
Marques
, and
S.
Botti
, “
Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations
,”
J. Mater. Chem. C
4
,
3157
3167
(
2016
).
You do not currently have access to this content.