We developed switchable Janus particles (JPs) fabricated by coating one hemisphere of silica microspheres with a phase-change film. We used the chalcogenide GeSbTe (GST), which exhibits a reversible phase change between a metal-like crystalline phase (c-GST) and a dielectric-like amorphous phase (a-GST). As a driving force for self-propelling the JPs, a perpendicular alternating current electric field was applied; the frequency dependence of the motion of an individual JP and that of inter-JP interaction were investigated. At lower frequencies (2–20 kHz), a-GST JPs were propelled with their silica side facing forward, which is similar to the behavior of Au–silica JPs propelled by the well-known induced-charge electrophoresis mechanism, whereas c-GST JPs were immobile because they adhered to the indium tin oxide substrate. At higher frequencies (50–300 kHz), both a-GST and c-GST JPs were propelled with their GST side facing forward and a substantial difference in inter-JP interaction was observed: repulsive collision for c-GST JPs but attractive stacking for a-GST JPs.

1.
S.
Ramaswamy
,
Annu. Rev. Cond. Mat. Phys.
1
,
323
(
2010
).
2.
M. C.
Marchetti
,
J. F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
,
Rev. Mod. Phys.
85
,
1143
(
2013
).
4.
C.
Bechinger
,
R. D.
Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
,
Rev. Mod. Phys.
88
,
45006
(
2016
).
5.
Y.
Alapan
,
B.
Yigit
,
O.
Beker
,
A. F.
Demirörs
, and
M.
Sitti
,
Nat. Mater.
18
,
1244
(
2019
).
6.
Y.
Yi
,
L.
Sanchez
,
Y.
Gao
, and
Y.
Yu
,
Analyst
141
,
3526
(
2016
).
7.
P.
Sundararajan
,
J.
Wang
,
L. A.
Rosen
,
A.
Procopio
, and
K.
Rosenberg
,
Chem. Eng. Sci.
178
,
199
(
2018
).
8.
Y.
Wang
,
Y.
Wang
,
D. R.
Breed
,
V. N.
Manoharan
,
L.
Feng
,
A. D.
Hollingsworth
,
M.
Weck
, and
D. J.
Pine
,
Nature
491
,
51
(
2012
).
9.
J.
Palacci
,
S.
Sacanna
,
A. P.
Steinberg
,
D. J.
Pine
, and
P. M.
Chaikin
,
Science
339
,
936
(
2013
).
10.
Z.
Gong
,
T.
Hueckel
,
G.-R.
Yi
, and
S.
Sacanna
,
Nature
550
,
234
(
2017
).
11.
J.
Zhang
,
J.
Guo
,
F.
Mou
, and
J.
Guan
,
Micromachines
9
,
88
(
2018
).
12.
F. A.
Lavergne
,
H.
Wendehenne
,
T.
Bäuerle
, and
C.
Bechinger
,
Science
364
,
70
(
2019
).
13.
P.
Illien
,
R.
Golestanian
, and
A.
Sen
,
Chem. Soc. Rev.
46
,
5508
(
2017
).
14.
J.
Zhang
,
E.
Luijten
, and
S.
Granick
,
Annu. Rev. Phys. Chem.
66
,
581
(
2015
).
15.
J.
Zhang
,
E.
Luijten
,
B. A.
Grzybowski
, and
S.
Granick
,
Chem. Soc. Rev.
46
,
5551
(
2017
).
16.
A.
Walther
and
A. H. E.
Müller
,
Chem. Rev.
113
,
5194
(
2013
).
17.
D.
Nishiguchi
and
M.
Sano
,
Phys. Rev. E
92
,
52309
(
2015
).
18.
J.
Yan
,
M.
Han
,
J.
Zhang
,
C.
Xu
,
E.
Luijten
, and
S.
Granick
,
Nat. Mater.
15
,
1095
(
2016
).
19.
J.
Yan
,
M.
Bloom
,
S. C.
Bae
,
E.
Luijten
, and
S.
Granick
,
Nature
491
,
578
(
2012
).
20.
T.
Li
,
A.
Zhang
,
G.
Shao
,
M.
Wei
,
B.
Guo
,
G.
Zhang
,
L.
Li
, and
W.
Wang
,
Adv. Funct. Mater.
28
,
1706066
(
2018
).
21.
H.-R.
Jiang
,
N.
Yoshinaga
, and
M.
Sano
,
Phys. Rev. Lett.
105
,
268302
(
2010
).
22.
I.
Theurkauff
,
C.
Cottin-Bizonne
,
J.
Palacci
,
C.
Ybert
, and
L.
Bocquet
,
Phys. Rev. Lett.
108
,
268303
(
2012
).
23.
W.
Gao
,
A.
Pei
,
R.
Dong
, and
J.
Wang
,
J. Am. Chem. Soc.
136
,
2276
(
2014
).
24.
S.
Gangwal
,
O. J.
Cayre
,
M. Z.
Bazant
, and
O. D.
Velev
,
Phys. Rev. Lett.
100
,
58302
(
2008
).
25.
H.
Feng
,
H.
Chang
,
X.
Zhong
, and
T. N.
Wong
,
Adv. Colloid Interface Sci.
280
,
102159
(
2020
).
26.
T.
Huang
,
V. R.
Misko
,
S.
Gobeil
,
X.
Wang
,
F.
Nori
,
J.
Schütt
,
J.
Fassbender
,
G.
Cuniberti
,
D.
Makarov
, and
L.
Baraban
,
Adv. Funct. Mater.
30
,
2003851
(
2020
).
27.
X.
Wang
,
L.
Baraban
,
A.
Nguyen
,
J.
Ge
,
V. R.
Misko
,
J.
Tempere
,
F.
Nori
,
P.
Formanek
,
T.
Huang
,
G.
Cuniberti
,
J.
Fassbender
, and
D.
Makarov
,
Small
14
,
1803613
(
2018
).
28.
H. R.
Vutukuri
,
M.
Lisicki
,
E.
Lauga
, and
J.
Vermant
,
Nat. Commun.
11
,
2628
(
2020
).
29.
T.
Mano
,
J.-B.
Delfau
,
J.
Iwasawa
, and
M.
Sano
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
E2580
(
2017
).
30.
M.
Wuttig
and
N.
Yamada
,
Nat. Mater.
6
,
824
(
2007
).
31.
K.
Shportko
,
S.
Kremers
,
M.
Woda
,
D.
Lencer
,
J.
Robertson
, and
M.
Wuttig
,
Nat. Mater.
7
,
653
(
2008
).
32.
T. M.
Squires
and
M. Z.
Bazant
,
J. Fluid Mech.
509
,
217
(
2004
).
33.
F.
Zhang
and
D.
Li
,
J. Colloid Interface Sci.
410
,
102
(
2013
).
34.
E.
Prokhorova
,
J. J.
Gervacio-Arciniega
,
G.
Luna-Bárcenas
,
Y.
Kovalenko
,
F. J.
Espinoza-Beltrán
, and
G.
Trápaga
,
J. Appl. Phys.
113
,
113705
(
2013
).
35.
G. H.
ten Brink
,
P. J.
van het Hof
,
B.
Chen
,
M.
Sedighi
,
B. J.
Kooi
, and
G.
Palasantzas
,
Appl. Phys. Lett.
109
,
234102
(
2016
).
36.
W.
Guo
,
B.
Chen
,
V. L.
Do
,
G. H.
ten Brink
,
B. J.
Kooi
,
V. B.
Svetovoy
, and
G.
Palasantzas
,
ACS Nano
13
,
13430
(
2019
).
37.
A. M.
Boymelgreen
and
T.
Miloh
,
Phys. Fluids
23
,
072007
(
2011
).
38.
M.
Manjare
,
Y. T.
Wu
,
B.
Yang
, and
Y.-P.
Zhao
,
Appl. Phys. Lett.
104
,
054102
(
2014
).
39.
S.
Ketzetzi
,
J.
de Graaf
,
R. P.
Doherty
, and
D. J.
Kraft
,
Phys. Rev. Lett.
124
,
048002
(
2020
).
40.
A.
Boymelgreen
,
G.
Yossifon
, and
T.
Miloh
,
Langmuir
32
,
9540
(
2016
).
41.
F.
Demirörs
,
M. T.
Akan
,
E.
Poloni
, and
A. R.
Studart
,
Soft Matter
14
,
4741
(
2018
).
42.
K.
Tanaka
,
Phys. Status Solidi B
257
,
1900756
(
2020
).
43.
M. G.
Mazza
,
N.
Giovambattista
,
F. W.
Starr
, and
H. E.
Stanley
,
Phys. Rev. Lett.
96
,
057803
(
2006
).
44.
E.
Yamamoto
,
T.
Akimoto
,
M.
Yasui
, and
K.
Yasuoka
,
Sci. Rep.
4
,
4720
(
2014
).
You do not currently have access to this content.