We report a series of measurements of the effect of an electric field on the frequency of the ultranarrow linewidth F70D50 optical transition of Eu3+ ions in an Y2SiO5 matrix at cryogenic temperatures. We provide linear Stark coefficients along two dielectric axes and for the two different substitution sites of the Eu3+ ions, with an unprecedented accuracy and an upper limit for the quadratic Stark shift. The measurements, which indicate that the electric field sensitivity is a factor of seven larger for site 1 relative to site 2 for a particular direction of the electric field, are of direct interest in the context of both quantum information processing and laser frequency stabilization with rare-earth doped crystals, in which electric fields can be used to engineer experimental protocols by tuning transition frequencies.

1.
R.
Yano
,
M.
Mitsunaga
, and
N.
Uesugi
, “
Ultralong optical dephasing time in Eu3+:Y2SiO5
,”
Opt. Lett.
16
,
1884
(
1991
).
2.
R. W.
Equall
,
Y.
Sun
,
R. L.
Cone
, and
R. M.
Macfarlane
, “
Ultraslow optical dephasing in Eu3+:Y2SiO5
,”
Phys. Rev. Lett.
72
,
2179
(
1994
).
3.
C. W.
Thiel
,
T.
Böttger
, and
R. L.
Cone
, “
Rare-earth-doped materials for applications in quantum information storage and signal processing
,”
J. Lumin.
131
,
353
(
2011
).
4.
P.
Goldner
,
A.
Ferrier
, and
O.
Guillot-Noël
, “
Rare earth-doped crystals for quantum information processing
,” in
Handbook on the Physics and Chemistry of Rare Earths
, edited by
J.-C. G.
Bünzli
and
V. K.
Pecharsky
(
Elsevier
,
2015
), Vol.
46
, pp.
1
78
.
5.
M.
Rančić
,
M. P.
Hedges
,
R. L.
Ahlefeldt
, and
M. J.
Sellars
, “
Coherence time of over a second in a telecom-compatible quantum memory storage material
,”
Nat. Phys.
14
,
50
(
2018
).
6.
P.
Berger
,
Y.
Attal
,
M.
Schwarz
,
S.
Molin
,
A.
Louchet-Chauvet
,
T.
Chanelière
,
J.-L. L.
Gouët
,
D.
Dolfi
, and
L.
Morvan
, “
RF spectrum analyzer for pulsed signals: ultra-wide instantaneous bandwidth, high sensitivity, and high time-resolution
,”
J. Lightwave Technol.
34
(
20
),
4658
(
2016
).
7.
C.
Venet
,
M.
Bocoum
,
J.-B.
Laudereau
,
T.
Chanelière
,
F.
Ramaz
, and
A.
Louchet-Chauvet
, “
Ultrasound-modulated optical tomography in scattering media: Flux filtering based on persistent spectral hole burning in the optical diagnosis window
,”
Opt. Lett.
43
,
3993
(
2018
).
8.
M.
Nilsson
and
S.
Kröll
, “
Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles
,”
Opt. Commun.
247
,
393
(
2005
).
9.
F.
Bussières
,
C.
Clausen
,
A.
Tiranov
,
B.
Korzh
,
V. B.
Verma
,
S. W.
Nam
,
F.
Marsili
,
A.
Ferrier
,
P.
Goldner
,
H.
Herrmann
,
C.
Silberhorn
,
W.
Sohler
,
M.
Afzelius
, and
N.
Gisin
, “
Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory
,”
Nat. Photonics
8
,
775
778
(
2014
).
10.
A.
Walther
,
L.
Rippe
,
Y.
Yan
,
J.
Karlsson
,
D.
Serrano
,
A. N.
Nilsson
,
S.
Bengtsson
, and
S.
Kröll
, “
High-fidelity readout scheme for rare-earth solid-state quantum computing
,”
Phys. Rev. A
92
,
022319
(
2015
).
11.
N.
Maring
,
P.
Farrera
,
K.
Kutluer
,
M.
Mazzera
,
G.
Heinze
, and
H.
de Riedmatten
, “
Photonic quantum state transfer between a cold atomic gas and a crystal
,”
Nature
551
,
485
(
2017
).
12.
A. M.
Dibos
,
M.
Raha
,
C. M.
Phenicie
, and
J. D.
Thompson
, “
Atomic source of single photons in the telecom band
,”
Phys. Rev. Lett.
120
,
243601
(
2018
).
13.
T.
Zhong
,
J. M.
Kindem
,
J. G.
Bartholomew
,
J.
Rochman
,
I.
Craiciu
,
E.
Miyazono
,
M.
Bettinelli
,
E.
Cavalli
,
V.
Verma
,
S. W.
Nam
,
F.
Marsili
,
M. D.
Shaw
,
A. D.
Beyer
, and
A.
Faraon
, “
Nanophotonic rare-earth quantum memory with optically controlled retrieval
,”
Science
357
(
6358
),
1392
(
2017
).
14.
C.
Laplane
,
P.
Jobez
,
J.
Etesse
,
N.
Gisin
, and
M.
Afzelius
, “
Multimode and long-lived quantum correlations between photons and spins in a crystal
,”
Phys. Rev. Lett.
118
,
210501
(
2017
).
15.
A.
Seri
,
A.
Lenhard
,
D.
Rieländer
,
M.
Gündoǧan
,
P. M.
Ledingham
,
M.
Mazzera
, and
H.
de Riedmatten
, “
Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory
,”
Phys. Rev. X
7
,
021028
(
2017
).
16.
B.
Julsgaard
,
A.
Walther
,
S.
Kröll
, and
L.
Rippe
, “
Understanding laser stabilization using spectral hole burning
,”
Opt. Express
15
,
11444
(
2007
).
17.
M. J.
Thorpe
,
L.
Rippe
,
T. M.
Fortier
,
M. S.
Kirchner
, and
T.
Rosenband
, “
Frequency stabilization to 6×1016 via spectral-hole burning
,”
Nat. Photonics
5
,
688
(
2011
).
18.
N.
Galland
,
N.
Lučić
,
S.
Zhang
,
H.
Alvarez-Martinez
,
R.
Le Targat
,
A.
Ferrier
,
P.
Goldner
,
B.
Fang
,
S.
Seidelin
, and
Y.
Le Coq
, “
Double-heterodyne probing for ultra-stable laser based spectral hole burning in a rare-earth doped crystals
,”
Opt. Lett.
45
,
1930
(
2020
).
19.
N.
Galland
,
N.
Lučić
,
B.
Fang
,
S.
Zhang
,
R.
Le Targat
,
A.
Ferrier
,
P.
Goldner
,
S.
Seidelin
, and
Y.
Le Coq
, “
Mechanical tunability of an ultranarrow spectral feature via uniaxial stress
,”
Phys. Rev. Appl.
13
,
044022
(
2020
).
20.
S.
Zhang
,
N.
Galland
,
N.
Lučić
,
R.
Le Targat
,
A.
Ferrier
,
P.
Goldner
,
B.
Fang
,
Y.
Le Coq
, and
S.
Seidelin
, “
Inhomogeneous response of an ion ensemble from mechanical stress
,”
Phys. Rev. Res.
2
,
013306
(
2020
).
21.
K.
Mølmer
,
Y.
Le Coq
, and
S.
Seidelin
, “
Dispersive coupling between light and a rare-earth-ion-doped mechanical resonator
,”
Phys. Rev. A
94
,
053804
(
2016
).
22.
S.
Seidelin
,
Y.
Le Coq
, and
K.
Mølmer
, “
Rapid cooling of a strain-coupled oscillator by an optical phase-shift measurement
,”
Phys. Rev. A
100
,
013828
(
2019
).
23.
R. M.
Macfarlane
, “
Optical Stark spectroscopy of solids
,”
J. Lumin.
125
,
156
(
2007
).
24.
Q.
Li
,
Y.
Bao
,
A.
Thuresson
,
A. N.
Nilsson
,
L.
Rippe
, and
S.
Kröll
, “
Slow-light-based optical frequency shifter
,”
Phys. Rev. A
93
,
043832
(
2016
).
25.
F. R.
Graf
, “
Investigations of spectral dynamics in rare earth ion doped crystals using high resolution laser techniques
,” Ph.D. thesis (
ETH Zürich
,
1998
).
26.
R. M.
Macfarlane
,
A.
Arcangeli
,
A.
Ferrier
, and
P.
Goldner
, “
Optical measurement of the effect of electric fields on the nuclear spin coherence of rare-earth ions in solids
,”
Phys. Rev. Lett.
113
,
157603
(
2014
).
27.
F.
Könz
,
Y.
Sun
,
C. W.
Thiel
,
R. L.
Cone
,
R. W.
Equall
,
R. L.
Hutcheson
, and
R. M.
Macfarlane
, “
Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5
,”
Phys. Rev. B
68
,
085109
(
2003
).
28.
O.
Gobron
,
K.
Jung
,
N.
Galland
,
K.
Predehl
,
R.
Letargat
,
A.
Ferrier
,
P.
Goldner
,
S.
Seidelin
, and
Y.
Le Coq
, “
Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals
,”
Opt. Express
25
,
15539
(
2017
).
29.
N. C.
Carvalho
,
J.-M.
Le Floch
,
J.
Krupka
, and
M.
Tobar
, “
Multi-mode technique for the determination of the biaxial Y2Si05 permittivity tenssor from 300 to 6K
,”
Appl. Phys. Lett.
106
,
192904
(
2015
).
30.
F. R.
Graf
,
A.
Renn
,
U. P.
Wild
, and
M.
Mitsunaga
, “
Site interference in Stark-modulated photon echoes
,”
Phys. Rev. B
55
,
11225
(
1997
).
31.
M. J.
Thorpe
,
D. R.
Leibrandt
, and
T.
Rosenband
, “
Shifts of optical frequency references based on spectral-hole burning in Eu3+:Y2SiO5
,”
New J. Phys.
15
,
033006
(
2013
).
You do not currently have access to this content.