We report on the development of a highly sensitive imaging polarimeter that allows for the investigation of polarization changing properties of materials in the x-ray regime. By combining a microfocus rotating anode, collimating multilayer mirrors, and two germanium polarizer crystals, we achieved a polarization purity of the two orthogonal linear polarization states of 8 × 10−8. This enables the detection of an ellipticity on the same order or a rotation of the polarization plane of 6 arcsec. The high sensitivity combined with the imaging techniques allows us to study the microcrystalline structure of materials. As an example, we investigated beryllium sheets of different grades, which are commonly used for fabricating x-ray lenses, with a spatial resolution of 200 μm, and observed a strong degradation of the polarization purity due to the polycrystalline nature of beryllium. This makes x-ray lenses made of beryllium unsuitable for imaging polarimeter with higher spatial resolution. The results are important for the development of x-ray optical instruments that combine high spatial resolution and high sensitivity to polarization.

1.
D. P.
Siddons
,
M.
Hart
,
Y.
Amemiya
, and
J. B.
Hastings
,
Phys. Rev. Lett.
64
,
1967
(
1990
).
2.
G.
van der Laan
and
A. I.
Figueroa
,
Coord. Chem. Rev.
277–278
,
95
(
2014
).
3.
A.
Ney
,
V.
Ney
,
K.
Ollefs
,
D.
Schauries
,
F.
Wilhelm
, and
A.
Rogalev
,
J. Surf. Interfaces Mater.
2
,
14
(
2014
).
4.
B. A.
Palmer
,
G. R.
Edwards-Gau
,
B. M.
Kariuki
,
K. D. M.
Harris
,
I. P.
Dolbnya
, and
S. P.
Collins
,
Science
344
,
1013
(
2014
).
5.
A. T.
Schmitt
,
Y.
Joly
,
K. S.
Schulze
,
B.
Marx-Glowna
,
I.
Uschmann
,
B.
Grabiger
,
H.
Bernhardt
,
R.
Loetzsch
,
A.
Juhin
,
H.-C.
Wille
,
H.
Yavaş
,
G. G.
Paulus
, and
R.
Röhlsberger
, “
Disentangling x-ray dichroism and birefringence in high-purity polarimetry
,” arXiv:2003.00849 (
2020
).
6.
J.
Haber
,
K. S.
Schulze
,
K.
Schlage
,
R.
Loetzsch
,
L.
Bocklage
,
T.
Gurieva
,
H.
Bernhardt
,
H.-C.
Wille
,
R.
Rüffer
,
I.
Uschmann
,
G. G.
Paulus
, and
R.
Röhlsberger
,
Nat. Photonics
10
,
445
(
2016
).
7.
B.
Marx
,
K. S.
Schulze
,
I.
Uschmann
,
T.
Kämpfer
,
R.
Lötzsch
,
O.
Wehrhan
,
W.
Wagner
,
C.
Detlefs
,
T.
Roth
,
J.
Härtwig
,
E.
Förster
,
T.
Stöhlker
, and
G. G.
Paulus
,
Phys. Rev. Lett.
110
,
254801
(
2013
).
9.
T. S.
Toellner
,
E. E.
Alp
,
W.
Sturhahn
,
T. M.
Mooney
,
X.
Zhang
,
M.
Ando
,
Y.
Yoda
, and
S.
Kikuta
,
Appl. Phys. Lett.
67
,
1993
(
1995
).
10.
D.
Siddons
,
J.
Hastings
,
U.
Bergmann
,
F.
Sette
, and
M.
Krisch
,
Nucl. Instrum. Methods Phys. Res. Sect. B
103
,
371
(
1995
).
11.
H.
Bernhardt
,
A. T.
Schmitt
,
B.
Grabiger
,
B.
Marx-Glowna
,
R.
Loetzsch
,
H.-C.
Wille
,
D.
Bessas
,
A. I.
Chumakov
,
R.
Rüffer
,
R.
Röhlsberger
,
T.
Stöhlker
,
I.
Uschmann
,
G. G.
Paulus
, and
K. S.
Schulze
,
Phys. Rev. Res.
2
,
023365
(
2020
).
12.
H.
Cole
,
F. W.
Chambers
, and
C. G.
Wood
,
J. Appl. Phys.
32
,
1942
(
1961
).
13.
J.
Hrdý
,
E.
Krouský
, and
O.
Renner
,
Phys. Status Solidi A
53
,
143
(
1979
).
14.
K.
Schulze
,
B.
Marx
,
I.
Uschmann
,
E.
Förster
,
T.
Stöhlker
, and
G.
Paulus
,
Appl. Phys. Lett.
104
,
151110
(
2014
).
15.
In Hart8 this is described with the modulation ration M, which is connected to the polarization purity P via M=1P.
16.
K.
Hirano
,
J. Appl. Phys.
79
,
3365
(
1996
).
17.
C.
Schroer
,
M.
Kuhlmann
,
U.
Hunger
,
T.
Günzler
,
O.
Kurapova
,
S.
Feste
,
F.
Frehse
,
B.
Lengeler
,
M.
Drakopoulos
,
A.
Somogyi
 et al.,
Appl. Phys. Lett.
82
,
1485
(
2003
).
18.
K. S.
Schulze
,
APL Photonics
3
,
126106
(
2018
).
19.
J. Z.
Tischler
and
B. W.
Batterman
,
Acta Crystallogr. Sect. A
42
,
510
(
1986
).
20.
The limitation to the polarization purity arises from the strength of multiple-wave diffraction far away from a reflection and is dominated either by the tails of the far away reflection or by structurally forbidden weak reflections. Tischler and Batterman investigated this and found a Z4 dependency for the strength of weak reflections in the
case of the diamond structure.
21.
C.
Giles
,
C.
Vettier
,
F.
de Bergevin
,
C.
Malgrange
,
G.
Grübel
, and
F.
Grossi
,
Rev. Sci. Instrum.
66
,
1518
(
1995
).
22.
T.
Roth
,
L.
Alianelli
,
D.
Lengeler
,
A.
Snigirev
, and
F.
Seiboth
,
MRS Bull.
42
,
430
436
(
2017
).
23.
V.
Mishin
,
P.
Glukhov
,
I.
Shishov
,
O.
Stolyarov
, and
I.
Kasatkin
,
Mater. Sci. Eng.: A
750
,
60
(
2019
).
24.
Y. P.
Stetsko
and
S.-L.
Chang
,
Acta Crystallogr. Sect. A
53
,
28
(
1997
).
25.
P.
Kirkpatrick
and
A. V.
Baez
,
J. Opt. Soc. Am.
38
,
766
(
1948
).
26.
S.
Terentyev
,
M.
Polikarpov
,
I.
Snigireva
,
M. D.
Michiel
,
S.
Zholudev
,
V.
Yunkin
,
S.
Kuznetsov
,
V.
Blank
, and
A.
Snigirev
,
J. Synchrotron Radiat.
24
,
103
(
2017
).
27.
A.
Artemiev
,
A.
Snigirev
,
V.
Kohn
,
I.
Snigireva
,
N.
Artemiev
,
M.
Grigoriev
,
S.
Peredkov
,
L.
Glikin
,
M.
Levtonov
,
V.
Kvardakov
 et al.,
Rev. Sci. Instrum.
77
,
063113
(
2006
).
28.
V.
Nazmov
,
E.
Reznikova
,
A.
Last
,
J.
Mohr
,
V.
Saile
,
R.
Simon
, and
M.
DiMichiel
,
AIP Conf. Proc.
879
,
770
(
2007
).
You do not currently have access to this content.