With the help of quantum entanglement, quantum dense metrology (QDM) is a technique that can make joint estimates of two conjugate quantities such as phase and amplitude modulations of an optical field, with an accuracy beating the standard quantum limit simultaneously. SU(1,1) interferometers (SUIs) can realize QDM with detection loss tolerance but is limited in absolute sensitivity. Here, we present a QDM scheme with a linear or SU(2) interferometer nested inside an SUI. By using a degenerate SUI and controlling the phase angle of the phase-sensitive amplifiers in the SUI, we can achieve the optimum quantum enhancement in the measurement precision of an arbitrary mixture of phase and amplitude modulation.
References
1.
C. M.
Caves
, “Quantum-mechanical noise in an interferometer
,” Phys. Rev. D
23
, 1693
(1981
).2.
The LIGO Scientific Collaboration.
“LIGO: The laser interferometer gravitational-wave observatory
,” Science
256
, 325
(1992
).3.
M. A.
Taylor
and W. P.
Bowen
, “Quantum metrology and its application in biology
,” Phys. Rep.
615
, 1
–59
(2016
).4.
M.
Xiao
, L. A.
Wu
, and H. J.
Kimble
, “Precision measurement beyond the shot-noise limit
,” Phys. Rev. Lett.
59
, 278
(1987
).5.
P.
Grangier
, R. E.
Slusher
, B.
Yurke
, and A.
LaPorta
, “Squeezed-light-enhanced polarization interferometer
,” Phys. Rev. Lett.
59
, 2153
(1987
).6.
L. S. C.
The
, “A gravitational wave observatory operating beyond the quantum shot-noise limit
,” Nat. Phys.
7
, 962
(2011
).7.
R.
Schnabel
, “Squeezed states of light and their applications in laser interferometers
,” Phys. Rep.
684
, 1
–57
(2017
).8.
H.
Yonezawa
, D.
Nakane
, T. A.
Wheatley
, K.
Iwasawa
, S.
Takeda
, H.
Arao
, K.
Ohki
, K.
Tsumura
, D. W.
Berry
, T. C.
Ralph
, H. M.
Wiseman
, E. H.
Huntington
, and A.
Furusawa
, “Quantum-enhanced optical phase tracking
,” Science
337
, 1514
(2012
).9.
M.
Xiao
, L. A.
Wu
, and H. J.
Kimble
, “Detection of amplitude modulation with squeezed light for sensitivity beyond the shot-noise limit
,” Opt. Lett.
13
, 476
(1988
).10.
S. L.
Braunstein
and H. J.
Kimble
, “Dense coding for continuous variables
,” Phys. Rev. A
61
, 042302
(2000
).11.
J.
Zhang
and K.
Peng
, “Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state
,” Phys. Rev. A
62
, 064302
(2000
).12.
X.
Li
, Q.
Pan
, J.
Jing
, J.
Zhang
, C.
Xie
, and K.
Peng
, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam
,” Phys. Rev. Lett.
88
, 047904
(2002
).13.
S.
Steinlechner
, J.
Bauchrowitz
, M.
Meinders
, H.
Müller-Ebhardt
, K.
Danzmann
, and R.
Schnabel
, “Quantum dense metrology
,” Nat. Photonics
7
, 626
(2013
).14.
J.
Li
, Y.
Liu
, L.
Cui
, N.
Huo
, S. M.
Assad
, X.
Li
, and Z. Y.
Ou
, “Joint measurement of multiple noncommuting parameters
,” Phys. Rev. A
97
, 052127
(2018
).15.
Y.
Liu
, J.
Li
, L.
Cui
, N.
Huo
, S. M.
Assad
, X.
Li
, and Z. Y.
Ou
, “Loss-tolerant quantum dense metrology with SU(1,1) interferometer
,” Opt. Express
26
, 27705
(2018
).16.
Z. Y.
Ou
, “Quantum amplification with correlated quantum fields
,” Phys. Rev. A
48
, R1761
(1993
).17.
N. V.
Corzo
, A. M.
Marino
, K. M.
Jones
, and P. D.
Lett
, “Noiseless optical amplifier operating on hundreds of spatial modes
,” Phys. Rev. Lett.
109
, 043602
(2012
).18.
J.
Kong
, F.
Hudelist
, Z. Y.
Ou
, and W.
Zhang
, “Cancellation of internal quantum noise of an amplifier by quantum correlation
,” Phys. Rev. Lett.
111
, 033608
(2013
).19.
W. N.
Plick
, J. P.
Dowling
, and G. S.
Agarwal
, “Coherent-light-boosted, sub-shot noise, quantum interferometry
,” New J. Phys.
12
, 083014
(2010
).20.
Z. Y.
Ou
, “Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer
,” Phys. Rev. A
85
, 023815
(2012
).21.
J.
Jing
, C.
Liu
, Z.
Zhou
, Z. Y.
Ou
, and W.
Zhang
, “Realization of a nonlinear interferometer with parametric amplifiers
,” Appl. Phys. Lett.
99
, 011110
(2011
).22.
F.
Hudelist
, J.
Kong
, C.
Liu
, J.
Jing
, Z. Y.
Ou
, and W.
Zhang
, “Quantum metrology with parametric amplifier-based photon correlation interferometers
,” Nat. Commun.
5
, 3049
(2014
).23.
M.
Manceau
, G.
Leuchs
, F.
Khalili
, and M.
Chekhova
, “Detection loss tolerant supersensitive phase measurement with an SU(1,1) interferometer
,” Phys. Rev. Lett.
119
, 223604
(2017
).24.
B. E.
Anderson
, P.
Gupta
, B. L.
Schmittberger
, T.
Horrom
, C.
Hermann-Avigliano
, K. M.
Jones
, and P. D.
Lett
, “Phase sensing beyond the standard quantum limit with a variation on the SU(1,1) interferometer
,” Optica
4
, 752
(2017
).25.
B.
Yurke
, S. L.
McCall
, and J. R.
Klauder
, “SU(2) and SU(1,1) interferometer
,” Phys. Rev. A
33
, 4033
–4054
(1986
).26.
27.
A. M.
Marino
, N. V.
Corzo Trejo
, and P. D.
Lett
, “Effect of losses on the performance of an SU(1,1) interferometer
,” Phys. Rev. A
86
, 023844
(2012
).28.
M.
Manceau
, F.
Khalili
, and M.
Chekhova
, “Improving the phase super-sensitivity of squeezing-assisted interferometers by squeeze factor unbalancing
,” New J. Phys.
19
(1
), 013014
(2017
).29.
J.
Li
, Y.
Liu
, N.
Huo
, L.
Cui
, C.
Feng
, Z. Y.
Ou
, and X.
Li
, “Pulsed entanglement measured by parametric amplifier assisted homodyne detection
,” Opt. Exp.
27
, 30552
(2019
).30.
Y.
Liu
, N.
Huo
, J.
Li
, L.
Cui
, X.
Li
, and Z. Y.
Ou
, “Optimum quantum resource distribution for phase measurement and quantum information tapping in a dual-beam SU(1,1) interferometer
,” Opt. Exp.
27
, 11292
(2019
).31.
S. M.
Assad
, J.
Li
, Y.
Liu
, N.
Zhao
, W.
Zhao
, P. K.
Lam
, Z. Y.
Ou
, and X.
Li
, “Accessible precisions for estimating two conjugate parameters using Gaussian probes
,” Phys. Rev. Res.
2
, 023182
(2020
).32.
W.
Du
, J.
Kong
, J.
Jia
, S.
Ming
, C.
Yuan
, J.
Chen
, Z. Y.
Ou
, M. W.
Mitchell
, and W.
Zhang
“SU(2) nested in SU(1,1) interferometer
,” arXiv:2004.14266 (2020
).33.
LIGO Scientific Collaboration
, “Quantum correlations between the light and kilogram-mass mirrors of LIGO
,” arXiv:2002.01519v1 (2020
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.