We explore a conformal gradient-index phononic crystal lens integrated within a pipe to amplify guided wave modes toward improved ultrasonic inspection of pipelines. The proposed conformal lens is composed of an array of cylindrical steel stubs attached to the outer surface of a steel pipe, which are tailored according to the hyperbolic secant profile of refractive index in the circumferential direction of the pipe. Hence, the ultrasonic guided wave energy is focused in the axial direction of the pipe and amplified at the focal point of the lens. Refractive indices are calculated using dispersion curves obtained from the finite element simulations of the stubbed unit cells, and the curved lens is designed for the second longitudinal wave mode of the pipe, which is commonly used in guided wave testing. The proposed lens design is implemented on a steel pipe, which is typically used in the distribution networks utilized in cities, and simultaneous focusing of longitudinal wave modes in a broad frequency range is verified through both numerical models and experimental measurements.

1.
M.
Mitra
and
S.
Gopalakrishnan
, “
Guided wave based structural health monitoring: A review
,”
Smart Mater. Struct.
25
,
053001
(
2016
).
2.
M.
Lowe
,
D.
Alleyne
, and
P.
Cawley
, “
Defect detection in pipes using guided waves
,”
Ultrasonics
36
,
147
154
(
1998
).
3.
H.
Shin
and
J.
Rose
, “
Guided wave tuning principles for defect detection in tubing
,”
J. Nondestruct. Eval.
17
,
27
36
(
1998
).
4.
D.
Alleyne
and
P.
Cawley
, “
The excitation of lamb waves in pipes using dry-coupled piezoelectric transducers
,”
J. Nondestruct. Eval.
15
,
11
20
(
1996
).
5.
P.
Lowe
,
R.
Sanderson
,
S.
Pedram
,
N.
Boulgouris
, and
P.
Mudge
, “
Inspection of pipelines using the first longitudinal guided wave mode
,”
Phys. Procedia
70
,
338
342
(
2015
).
6.
L.
Tang
and
B.
Wu
, “
Excitation mechanism of flexural-guided wave modes F(1, 2) and F(1, 3) in pipes
,”
J. Nondestruct. Eval.
36
,
59
(
2017
).
7.
X.
Niu
,
W.
Duan
,
H.-P.
Chen
, and
H.
Marques
, “
Excitation and propagation of torsional T(0,1) mode for guided wave testing of pipeline integrity
,”
Measurement
131
,
341
348
(
2019
).
8.
W.
Luo
and
J. L.
Rose
, “
Phased array focusing with guided waves in a viscoelastic coated hollow cylinder
,”
J. Acoust. Soc. Am.
121
,
1945
1955
(
2007
).
9.
J.
Li
and
J. L.
Rose
, “
Angular-profile tuning of guided waves in hollow cylinders using a circumferential phased array
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
49
,
1720
1729
(
2002
).
10.
Y.
Jin
,
B.
Djafari-Rouhani
, and
D.
Torrent
, “
Gradient index phononic crystals and metamaterials
,”
Nanophotonics
8
,
685
701
(
2019
).
11.
P. A. E.
Deymier
,
Acoustic Metamaterials and Phononic Crystals
(
Springer Science and Business Media
,
2013
), Vol.
173
.
12.
V.
Laude
,
Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves
(
Walter de Gruyter GmbH and Co KG
,
2015
), Vol.
26
.
13.
R.
Martinez-Sala
,
J.
Sancho
,
J.
Sánchez-Pérez
,
V.
Gomez
,
J.
Llinares
, and
F.
Meseguer
, “
Sound attenuation by sculpture
,”
Nature
378
,
241
(
1995
).
14.
C. J.
Rupp
,
M. L.
Dunn
, and
K.
Maute
, “
Switchable phononic wave filtering, guiding, harvesting, and actuating in polarization-patterned piezoelectric solids
,”
Appl. Phys. Lett.
96
,
111902
(
2010
).
15.
S. A.
Cummer
and
D.
Schurig
, “
One path to acoustic cloaking
,”
New J. Phys.
9
,
45
45
(
2007
).
16.
M.
Farhat
,
S.
Guenneau
, and
S.
Enoch
, “
Ultrabroadband elastic cloaking in thin plates
,”
Phys. Rev. Lett.
103
,
024301
(
2009
).
17.
Y.
Chen
,
H.
Liu
,
M.
Reilly
,
H.
Bae
, and
M.
Yu
, “
Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials
,”
Nat. Commun.
5
,
5247
(
2014
).
18.
S.
Tol
,
F. L.
Degertekin
, and
A.
Erturk
, “
Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting
,”
Appl. Phys. Lett.
109
,
063902
(
2016
).
19.
S.
Tol
,
F. L.
Degertekin
, and
A.
Erturk
, “
Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting
,”
Appl. Phys. Lett.
111
,
013503
(
2017
).
20.
J.
Hyun
,
W.
Choi
, and
M.
Kim
, “
Gradient-index phononic crystals for highly dense flexural energy harvesting
,”
Appl. Phys. Lett.
115
,
173901
(
2019
).
21.
H.
Danawe
,
G.
Okudan
,
D.
Ozevin
, and
S.
Tol
, “
Metamaterial-based amplification of multi-mode ultrasonic guided waves toward improved damage detection in pipelines
,”
Proc. SPIE
11376
,
160
166
(
2020
).
22.
S.-C. S.
Lin
,
T. J.
Huang
,
J.-H.
Sun
, and
T.-T.
Wu
, “
Gradient-index phononic crystals
,”
Phys. Rev. B
79
,
094302
(
2009
).
23.
T.-T.
Wu
,
Y.-T.
Chen
,
J.-H.
Sun
,
S.-C.
Lin
, and
T.
Huang
, “
Focusing of the lowest antisymmetric lamb wave in a gradient-index phononic crystal plate
,”
Appl. Phys. Lett.
98
,
171911
(
2011
).
24.
J.
Zhao
,
R.
Marchal
,
B.
Bonello
, and
O.
Boyko
, “
Efficient focalization of antisymmetric lamb waves in gradient-index phononic crystal plates
,”
Appl. Phys. Lett.
101
,
261905
(
2012
).
25.
D.
Ozevin
and
H.
Yalcinkaya
, “
New leak localization approach in pipelines using single-point measurement
,”
J. Pipeline Syst. Eng. Pract.
5
,
04013020
(
2014
).
26.
P. S.
Lowe
,
H.
Lais
,
V.
Paruchuri
, and
T.-H.
Gan
, “
Application of ultrasonic guided waves for inspection of high density polyethylene pipe systems
,”
Sensors
20
,
3184
(
2020
).
27.
M. V. P. C.
Gómez-Reino
and
C.
Bao
,
Gradient-Index Optics: Fundamentals and Applications
(
Springer
,
Berlin
,
2002
).
28.
J. L.
Rose
,
Ultrasonic Guided Waves in Solid Media
(
Cambridge University Press
,
2014
).
You do not currently have access to this content.