We report super-resolution high-numerical-aperture and long-working-distance superoscillatory quartz lenses for focusing and imaging applications. At the wavelength of λ = 633 nm, the lenses have an effective numerical aperture of 1.25, a working distance of 200 μm, and a focus into a hotspot of 0.4λ. Confocal imaging with resolution determined by the superoscillatory hotspot size is experimentally demonstrated.
References
1.
S.
Wang
, P. C.
Wu
, V.-C.
Su
, Y.-C.
Lai
, M.-K.
Chen
, H. Y.
Kuo
, B. H.
Chen
, Y. H.
Chen
, T.-T.
Huang
, J.-H.
Wang
, R.-M.
Lin
, C.-H.
Kuan
, T.
Li
, Z.
Wang
, S.
Zhu
, and D. P.
Tsai
, “A broadband achromatic metalens in the visible
,” Nat. Nanotechnol.
13
, 227
(2018
).2.
W. T.
Chen
, A. Y.
Zhu
, V.
Sanjeev
, M.
Khorasaninejad
, Z.
Shi
, E.
Lee
, and F.
Capasso
, “A broadband achromatic metalens for focusing and imaging in the visible
,” Nat. Nanotechnol.
13
, 220
(2018
).3.
M.
Khorasaninejad
, W. T.
Chen
, R. C.
Devlin
, J.
Oh
, A. Y.
Zhu
, and F.
Capasso
, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging
,” Science
352
, 1190
(2016
).4.
M. V.
Berry
and S.
Popescu
, “Evolution of quantum superoscillations and optical superresolution without evanescent waves
,” J. Phys. A
39
, 6965
(2006
).5.
F. M.
Huang
and N. I.
Zheludev
, “Super-resolution without evanescent waves
,” Nano Lett.
9
, 1249
(2009
).6.
E. T. F.
Rogers
and N. I.
Zheludev
, “Optical superoscillations: Sub-wavelength light focusing and super-resolution imaging
,” J. Opt.
15
, 094008
(2013
).7.
K.
Huang
, F.
Qin
, H.
Liu
, H.
Ye
, C.-W.
Qiu
, M.
Hong
, B.
Luk'yanchuk
, and J.
Teng
, “Planar diffractive lenses: Fundamentals, functionalities, and applications
,” Adv. Mater.
30
, 1704556
(2018
).8.
G.
Chen
, Z.-Q.
Wen
, and C.-W.
Qiu
, “Superoscillation: From physics to optical applications
,” Light Sci. Appl.
8
, 56
(2019
).9.
G. H.
Yuan
, K. S.
Rogers
, E. T. F.
Rogers
, and N. I.
Zheludev
, “Far-field superoscillatory metamaterials superlens
,” Phys. Rev. Appl.
11
, 064016
(2019
).10.
F. M.
Huang
, T. S.
Kao
, V. A.
Fedotov
, Y.
Chen
, and N. I.
Zheludev
, “Nanohole array as a lens
,” Nano Lett.
8
, 2469
(2008
).11.
E. T.
Rogers
, S.
Quraishe
, J. L.
Bailey
, T. A.
Newman
, J. E.
Chad
, N. I.
Zheludev
, and P. J.
Smith
, “Super-oscillatory imaging of nanoparticle interactions with neurons
,” Biophys. J.
108
, 479a
(2015
).12.
E. T. F.
Rogers
, S.
Quraishe
, K. S.
Rogers
, T. A.
Newman
, P. J. S.
Smith
, and N. I.
Zheludev
, “Far-field unlabelled super-resolution imaging with superoscillatory illumination
,” APL Photonics
5
, 066107
(2020
).13.
A. M. H.
Wong
and G. V.
Eleftheriades
, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit
,” Sci. Rep.
3
, 1715
(2013
).14.
F.
Qin
, K.
Huang
, J. F.
Wu
, J. H.
Teng
, C. W.
Qiu
, and M. H.
Hong
, “A supercritical lens optical label-free microscopy: Sub-diffraction resolution and ultra-long working distance
,” Adv. Mater.
29
, 1602721
(2017
).15.
G. H.
Yuan
and N. I.
Zheludev
, “Detecting nanometric displacements with optical ruler metrology
,” Science
364
, 771
(2019
).16.
B. K.
Singh
, H.
Nagar
, Y.
Roichman
, and A.
Arie
, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams
,” Light Sci. Appl.
6
, e17050
(2017
).17.
G. H.
Yuan
, E. T. F.
Rogers
, T.
Roy
, G.
Adamo
, Z. X.
Shen
, and N. I.
Zheludev
, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths
,” Sci. Rep.
4
, 6333
(2015
).18.
H.
Shim
, H.
Chung
, and D. D.
Miller
, “Maximal free-space concentration of electromagnetic waves
,” arXiv:1905.10500 (2019
).19.
G. H.
Yuan
, Y.-H.
Lin
, D. P.
Tsai
, and N. I.
Zheludev
(2020
), “Superoscillatory quartz lens with effective numerical aperture greater than one,” University of Southampton ePrints research repository, .© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.