We report super-resolution high-numerical-aperture and long-working-distance superoscillatory quartz lenses for focusing and imaging applications. At the wavelength of λ = 633 nm, the lenses have an effective numerical aperture of 1.25, a working distance of 200 μm, and a focus into a hotspot of 0.4λ. Confocal imaging with resolution determined by the superoscillatory hotspot size is experimentally demonstrated.

1.
S.
Wang
,
P. C.
Wu
,
V.-C.
Su
,
Y.-C.
Lai
,
M.-K.
Chen
,
H. Y.
Kuo
,
B. H.
Chen
,
Y. H.
Chen
,
T.-T.
Huang
,
J.-H.
Wang
,
R.-M.
Lin
,
C.-H.
Kuan
,
T.
Li
,
Z.
Wang
,
S.
Zhu
, and
D. P.
Tsai
, “
A broadband achromatic metalens in the visible
,”
Nat. Nanotechnol.
13
,
227
(
2018
).
2.
W. T.
Chen
,
A. Y.
Zhu
,
V.
Sanjeev
,
M.
Khorasaninejad
,
Z.
Shi
,
E.
Lee
, and
F.
Capasso
, “
A broadband achromatic metalens for focusing and imaging in the visible
,”
Nat. Nanotechnol.
13
,
220
(
2018
).
3.
M.
Khorasaninejad
,
W. T.
Chen
,
R. C.
Devlin
,
J.
Oh
,
A. Y.
Zhu
, and
F.
Capasso
, “
Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging
,”
Science
352
,
1190
(
2016
).
4.
M. V.
Berry
and
S.
Popescu
, “
Evolution of quantum superoscillations and optical superresolution without evanescent waves
,”
J. Phys. A
39
,
6965
(
2006
).
5.
F. M.
Huang
and
N. I.
Zheludev
, “
Super-resolution without evanescent waves
,”
Nano Lett.
9
,
1249
(
2009
).
6.
E. T. F.
Rogers
and
N. I.
Zheludev
, “
Optical superoscillations: Sub-wavelength light focusing and super-resolution imaging
,”
J. Opt.
15
,
094008
(
2013
).
7.
K.
Huang
,
F.
Qin
,
H.
Liu
,
H.
Ye
,
C.-W.
Qiu
,
M.
Hong
,
B.
Luk'yanchuk
, and
J.
Teng
, “
Planar diffractive lenses: Fundamentals, functionalities, and applications
,”
Adv. Mater.
30
,
1704556
(
2018
).
8.
G.
Chen
,
Z.-Q.
Wen
, and
C.-W.
Qiu
, “
Superoscillation: From physics to optical applications
,”
Light Sci. Appl.
8
,
56
(
2019
).
9.
G. H.
Yuan
,
K. S.
Rogers
,
E. T. F.
Rogers
, and
N. I.
Zheludev
, “
Far-field superoscillatory metamaterials superlens
,”
Phys. Rev. Appl.
11
,
064016
(
2019
).
10.
F. M.
Huang
,
T. S.
Kao
,
V. A.
Fedotov
,
Y.
Chen
, and
N. I.
Zheludev
, “
Nanohole array as a lens
,”
Nano Lett.
8
,
2469
(
2008
).
11.
E. T.
Rogers
,
S.
Quraishe
,
J. L.
Bailey
,
T. A.
Newman
,
J. E.
Chad
,
N. I.
Zheludev
, and
P. J.
Smith
, “
Super-oscillatory imaging of nanoparticle interactions with neurons
,”
Biophys. J.
108
,
479a
(
2015
).
12.
E. T. F.
Rogers
,
S.
Quraishe
,
K. S.
Rogers
,
T. A.
Newman
,
P. J. S.
Smith
, and
N. I.
Zheludev
, “
Far-field unlabelled super-resolution imaging with superoscillatory illumination
,”
APL Photonics
5
,
066107
(
2020
).
13.
A. M. H.
Wong
and
G. V.
Eleftheriades
, “
An optical super-microscope for far-field, real-time imaging beyond the diffraction limit
,”
Sci. Rep.
3
,
1715
(
2013
).
14.
F.
Qin
,
K.
Huang
,
J. F.
Wu
,
J. H.
Teng
,
C. W.
Qiu
, and
M. H.
Hong
, “
A supercritical lens optical label-free microscopy: Sub-diffraction resolution and ultra-long working distance
,”
Adv. Mater.
29
,
1602721
(
2017
).
15.
G. H.
Yuan
and
N. I.
Zheludev
, “
Detecting nanometric displacements with optical ruler metrology
,”
Science
364
,
771
(
2019
).
16.
B. K.
Singh
,
H.
Nagar
,
Y.
Roichman
, and
A.
Arie
, “
Particle manipulation beyond the diffraction limit using structured super-oscillating light beams
,”
Light Sci. Appl.
6
,
e17050
(
2017
).
17.
G. H.
Yuan
,
E. T. F.
Rogers
,
T.
Roy
,
G.
Adamo
,
Z. X.
Shen
, and
N. I.
Zheludev
, “
Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths
,”
Sci. Rep.
4
,
6333
(
2015
).
18.
H.
Shim
,
H.
Chung
, and
D. D.
Miller
, “
Maximal free-space concentration of electromagnetic waves
,” arXiv:1905.10500 (
2019
).
19.
G. H.
Yuan
,
Y.-H.
Lin
,
D. P.
Tsai
, and
N. I.
Zheludev
(
2020
), “Superoscillatory quartz lens with effective numerical aperture greater than one,” University of Southampton ePrints research repository, .
You do not currently have access to this content.