We present a superconducting microresonator thermometer based on two-level systems (TLSs), which is drop-in compatible with cryogenic microwave systems. The operational temperature range is 50–1000 mK (which may be extended to 5 mK), and the sensitivity (50–75 μK/Hz) is relatively uniform across this range. The miniature footprint that conveniently attaches to the feedline of a cryogenic microwave device facilitates the measurement of on-chip device temperature and requires no additional thermometry wiring or readout electronics. We demonstrate the practical use of these TLS thermometers to investigate static and transient chip heating in a kinetic inductance traveling-wave parametric amplifier operated with a strong pump tone. TLS thermometry may find broad application in cryogenic microwave devices such as superconducting qubits and detectors.

1.
M.
Kjaergaard
,
M. E.
Schwartz
,
J.
Braumüller
,
P.
Krantz
,
J. I.-J.
Wang
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Superconducting qubits: Current state of play
,”
Annu. Rev. Condens. Matter Phys.
11
,
369
395
(
2020
).
2.
J.
Zmuidzinas
, “
Superconducting microresonators: Physics and applications
,”
Annu. Rev. Condens. Matter Phys.
3
,
169
214
(
2012
).
3.
J. A. B.
Mates
, “
The microwave SQUID multiplexer
,” Ph.D. thesis (
University of Colorado at Boulder
,
2011
).
4.
M. A.
Castellanos-Beltran
,
K. D.
Irwin
,
G. C.
Hilton
,
L. R.
Vale
, and
K. W.
Lehnert
, “
Amplification and squeezing of quantum noise with a tunable Josephson metamaterial
,”
Nat. Phys.
4
,
929
931
(
2008
).
5.
N.
Bergeal
,
F.
Schackert
,
M.
Metcalfe
,
R.
Vijay
,
V. E.
Manucharyan
,
L.
Frunzio
,
D. E.
Prober
,
R. J.
Schoelkopf
,
S. M.
Girvin
, and
M. H.
Devoret
, “
Phase-preserving amplification near the quantum limit with a Josephson ring modulator
,”
Nature
465
,
64
68
(
2010
).
6.
B.
Ho Eom
,
P. K.
Day
,
H. G.
Leduc
, and
J.
Zmuidzinas
, “
A wideband, low-noise superconducting amplifier with high dynamic range
,”
Nat. Phys.
8
,
623
627
(
2012
).
7.
M. R.
Vissers
,
R. P.
Erickson
,
H.-S.
Ku
,
L.
Vale
,
X.
Wu
,
G. C.
Hilton
, and
D. P.
Pappas
, “
Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing
,”
Appl. Phys. Lett.
108
,
012601
(
2016
).
8.
M.
Malnou
,
M. R.
Vissers
,
J. D.
Wheeler
,
J.
Aumentado
,
J.
Hubmayr
,
J. N.
Ullom
, and
J.
Gao
, “
A three-wave mixing kinetic inductance traveling-wave amplifier with near-quantum-limited noise performance
,” arXiv:2007.00638 [quant-ph] (
2020
).
9.
C.
Müller
,
J. H.
Cole
, and
J.
Lisenfeld
, “
Towards understanding two-level-systems in amorphous solids: Insights from quantum circuits
,”
Rep. Prog. Phys.
82
,
124501
(
2019
).
10.
W. A.
Phillips
, “
Tunneling states in amorphous solids
,”
J. Low Temp. Phys.
7
,
351
360
(
1972
).
11.
P. W.
Anderson
,
B. I.
Halperin
, and
C. M.
Varma
, “
Anomalous low-temperature thermal properties of glasses and spin glasses
,”
Philos. Mag.
25
,
1
9
(
1972
).
12.
J.
Gao
,
M.
Daal
,
A.
Vayonakis
,
S.
Kumar
,
J.
Zmuidzinas
,
B.
Sadoulet
,
B. A.
Mazin
,
P. K.
Day
, and
H. G.
Leduc
, “
Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators
,”
Appl. Phys. Lett.
92
,
152505
(
2008
); arXiv:0802.4457 [cond-mat.supr-con].
13.
J.
Gao
, “
The physics of superconducting microwave resonators
,” Ph.D. thesis (
California Institute of Technology
,
2008
).
14.
J. M.
Martinis
,
K. B.
Cooper
,
R.
McDermott
,
M.
Steffen
,
M.
Ansmann
,
K. D.
Osborn
,
K.
Cicak
,
S.
Oh
,
D. P.
Pappas
,
R. W.
Simmonds
, and
C. C.
Yu
, “
Decoherence in Josephson qubits from dielectric loss
,”
Phys. Rev. Lett.
95
,
210503
(
2005
).
15.
W. N.
Lawless
, “
A low temperature glass-ceramic capacitance thermometer
,”
Rev. Sci. Instrum.
42
,
561
566
(
1971
).
16.
J.
Gao
,
J.
Zmuidzinas
,
B. A.
Mazin
,
H. G.
LeDuc
, and
P. K.
Day
, “
Noise properties of superconducting coplanar waveguide microwave resonators
,”
Appl. Phys. Lett.
90
,
102507
(
2007
); arXiv:cond-mat/0609614 [cond-mat.supr-con].
17.
S.
Kumar
,
J.
Gao
,
J.
Zmuidzinas
,
B. A.
Mazin
,
H. G.
LeDuc
, and
P. K.
Day
, “
Temperature dependence of the frequency and noise of superconducting coplanar waveguide resonators
,”
Appl. Phys. Lett.
92
,
123503
(
2008
); arXiv:0802.4268 [cond-mat.supr-con].
18.
J. J.
Burnett
,
A.
Bengtsson
,
M.
Scigliuzzo
,
D.
Niepce
,
M.
Kudra
,
P.
Delsing
, and
J.
Bylander
, “
Decoherence benchmarking of superconducting qubits
,”
npj Quantum Inf.
5
,
1
8
(
2019
).
19.
B.
Sarabi
,
A. N.
Ramanayaka
,
A. L.
Burin
,
F. C.
Wellstood
, and
K. D.
Osborn
, “
Projected dipole moments of individual two-level defects extracted using circuit quantum electrodynamics
,”
Phys. Rev. Lett.
116
,
167002
(
2016
).
20.
J. D.
Brehm
,
A.
Bilmes
,
G.
Weiss
,
A. V.
Ustinov
, and
J.
Lisenfeld
, “
Transmission-line resonators for the study of individual two-level tunneling systems
,”
Appl. Phys. Lett.
111
,
112601
(
2017
).
21.
X.
Liu
,
W.
Guo
,
Y.
Wang
,
M.
Dai
,
L. F.
Wei
,
B.
Dober
,
C. M.
McKenney
,
G. C.
Hilton
,
J.
Hubmayr
,
J. E.
Austermann
,
J. N.
Ullom
,
J.
Gao
, and
M. R.
Vissers
, “
Superconducting micro-resonator arrays with ideal frequency spacing
,”
Appl. Phys. Lett.
111
,
252601
(
2017
).
22.
C. M.
McKenney
,
J. E.
Austermann
,
J. A.
Beall
,
B. J.
Dober
,
S. M.
Duff
,
J.
Gao
,
G. C.
Hilton
,
J.
Hubmayr
,
D.
Li
,
J. N.
Ullom
,
J. L.
Van Lanen
, and
M. R.
Vissers
, “
Tile-and-trim micro-resonator array fabrication optimized for high multiplexing factors
,”
Rev. Sci. Instrum.
90
,
023908
(
2019
).
23.
S.
Chaudhuri
,
J.
Gao
, and
K.
Irwin
, “
Simulation and analysis of superconducting traveling-wave parametric amplifiers
,”
IEEE Trans. Appl. Supercond.
25
,
1
5
(
2015
).
24.
J.
Bockstiegel
,
C.
Gao
,
M.
Vissers
,
M.
Sandberg
,
S.
Chaudhuri
,
A.
Sanders
,
L.
Vale
,
K.
Irwin
, and
D.
Pappas
, “
Development of a broadband NbTiN traveling wave parametric amplifier for MKID readout
,”
J. Low Temp. Phys.
176
,
476
482
(
2014
).
You do not currently have access to this content.