We present thin acoustic meta-structures with subwavelength dimensions through which almost perfect sound absorption is achieved in the low-frequency domain. Our overall strategy builds on the fact that the sound absorption capabilities of the meta-structures primarily depend on the geometric dimensions and can easily be reconfigured as per requirements through a change of geometry. To analyze various possibilities, we optimize the geometric structure through hybrid regression analysis using the genetic algorithm approach and finite element-based numerical simulations so that the geometry is tuned for high attenuation of acoustic signals over a broad range of frequencies. Both theoretical and experimental data show good parity and are able to establish the meta-structure nature of the assembly with respect to different frequency bands in the low frequency domain.

1.
T. L.
Szabo
,
J. Acoust. Soc. Am.
96
,
491
(
1994
).
2.
J.
Mei
,
G.
Ma
,
M.
Yang
,
Z.
Yang
,
W.
Wen
, and
P.
Sheng
,
Nat. Commun.
3
,
756
(
2012
).
3.
T. D.
Rossing
,
Springer Handbook of Acoustics
(
Springer
,
2007
).
4.
X.
Cai
,
Q.
Guo
,
G.
Hu
, and
J.
Yang
,
Appl. Phys. Lett.
105
,
121901
(
2014
).
5.
M.
Yang
,
Y.
Li
,
C.
Meng
,
C.
Fu
,
J.
Mei
,
Z.
Yang
, and
P.
Sheng
,
C. R. Mec.
343
,
635
(
2015
).
6.
C.
Fu
,
X.
Zhang
,
M.
Yang
,
S.
Xiao
, and
Z.
Yang
,
Appl. Phys. Lett.
110
,
021901
(
2017
).
7.
H.
Long
,
Y.
Cheng
, and
X.
Liu
,
Appl. Phys. Lett.
111
,
143502
(
2017
).
8.
Y.
Tang
,
S.
Ren
,
H.
Meng
,
F.
Xin
,
L.
Huang
,
T.
Chen
,
C.
Zhang
, and
T. J.
Lu
,
Sci. Rep.
7
,
43340
(
2017
).
9.
A.
Sanada
and
N.
Tanaka
,
Appl. Acoust.
74
,
509
(
2013
).
10.
A. O.
Krushynska
,
Front. Mater.
6
,
182
(
2019
).
11.
S.
Kumar
,
T. B.
Xiang
, and
H. P.
Lee
,
Appl. Acoust.
159
,
107088
(
2020
).
12.
J.
Song
,
P.
Bai
,
Z.
Hang
, and
Y.
Lai
,
New J. Phys.
16
,
033026
(
2014
).
13.
C.
Zhou
,
B.
Yuan
,
Y.
Cheng
, and
X.
Liu
,
Appl. Phys. Lett.
108
,
063501
(
2016
).
14.
C.
Chen
,
Z.
Du
,
G.
Hu
, and
J.
Yang
,
Appl. Phys. Lett.
110
,
221903
(
2017
).
15.
Z.
Liang
,
T.
Feng
,
S.
Lok
,
F.
Liu
,
K. B.
Ng
,
C. H.
Chan
,
J.
Wang
,
S.
Han
,
S.
Lee
, and
J.
Li
,
Sci. Rep.
3
,
1614
(
2013
).
16.
Y.
Li
,
B.
Liang
,
X.
Tao
,
X.-F.
Zhu
,
X.-Y.
Zou
, and
J.-C.
Cheng
,
Appl. Phys. Lett.
101
,
233508
(
2012
).
17.
S.
Kumar
and
H. P.
Lee
,
Appl. Phys. Lett.
116
,
134103
(
2020
).
18.
S.
Kumar
,
P.
Bhushan
,
O.
Prakash
, and
S.
Bhattacharya
,
Appl. Phys. Lett.
112
,
101905
(
2018
).
19.
X.
Wu
,
C.
Fu
,
X.
Li
,
Y.
Meng
,
Y.
Gao
,
J.
Tian
,
L.
Wang
,
Y.
Huang
,
Z.
Yang
, and
W.
Wen
,
Appl. Phys. Lett.
109
,
043501
(
2016
).
20.
X.
Wang
,
X.
Luo
,
H.
Zhao
, and
Z.
Huang
,
Appl. Phys. Lett.
112
,
021901
(
2018
).
21.
H.
Ruiz
,
P.
Cobo
, and
F.
Jacobsen
,
Appl. Acoust.
72
,
772
(
2011
).
22.
D.-Y.
Maa
,
J. Acoust. Soc. Am.
104
,
2861
(
1998
).
23.
S.
Kumar
,
A. K.
Dubey
, and
A. K.
Pandey
,
Int. J. Precis. Eng. Manuf.
14
,
1119
(
2013
).
24.
N.
Jiménez
,
W.
Huang
,
V.
Romero-García
,
V.
Pagneux
, and
J.-P.
Groby
,
Appl. Phys. Lett.
109
,
121902
(
2016
).
25.
S. H.
Lee
and
O. B.
Wright
,
Phys. Rev. B
93
,
024302
(
2016
).
26.
G.
Ma
and
P.
Sheng
,
Sci. Adv.
2
,
e1501595
(
2016
).

Supplementary Material

You do not currently have access to this content.