2D materials such as graphene and hexagonal-boron nitride (h-BN), to name a few, when layered on top of each other offer a class of metamaterials with interesting properties. For example, the twisting degree of freedom between two layers has started the field of twistronics. The exceptional attributes of 2D materials like ultra-low mass, robustness, and high tunability make them very suitable for nanoelectromechanical systems (NEMS). Yet the mechanical properties of these heterostructures in the form of NEMS have not been studied extensively. Such 2D NEMS hold promise for various technological applications, namely, ultrafast sensors, actuators, etc. We report fabrication and characterization of h-BN graphene heterostructure-based circular nanoelectromechanical resonators on sapphire substrates. The devices are measured at cryogenic temperatures and exhibit multiple mode frequencies, which are highly tunable with gate voltage. A continuum mechanics model is employed to analyze the transmission (S21) data of the fundamental mode. Parameters like built-in tension obtained from the fit are used to identify the indices (m, n) of higher mechanical modes observed for the device, providing further device characterization. Such 2D NEMS could offer a way to study diverse electronic phenomena such as superconductivity in twisted bilayer graphene (tBLG) heterostructures.

1.
J. S.
Bunch
,
A. M.
van der Zande
,
S. S.
Verbridge
,
I. W.
Frank
,
D. M.
Tanenbaum
,
J. M.
Parpia
,
H. G.
Craighead
, and
P. L.
McEuen
,
Science
315
,
490
(
2007
).
2.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
,
385
(
2008
).
3.
S. P.
Koenig
,
N.
Boddeti
,
M. L.
Dunn
, and
J. S.
Bunch
,
Nat. Nanotechnol.
6
(
9
),
543
(
2011
).
4.
V.
Singh
,
S.
Bosman
,
B.
Schneider
,
Y.
Blanter
,
A.
Castellanos-Gomez
, and
G.
Steele
,
Nat. Nanotechnol.
9
,
820
(
2014
).
5.
X. L.
Feng
,
C. J.
White
,
A.
Hajimiri
, and
M. L.
Roukes
,
Nat. Nanotechnol.
3
,
342
(
2008
).
6.
H. J.
Mamin
and
D.
Rugar
,
Appl. Phys. Lett.
79
,
3358
(
2001
).
7.
Y. T.
Yang
,
C.
Callegari
,
X. L.
Feng
,
K. L.
Ekinci
, and
M. L.
Roukes
,
Nano Lett.
6
,
583
(
2006
).
8.
C.
Chen
,
S.
Rosenblatt
,
K.
Bolotin
,
W.
Kalb
,
P.
Kim
,
I.
Kymissis
,
H.
Stormer
,
T.
Heinz
, and
J.
Hone
,
Nat. Nanotechnol.
4
,
861
(
2009
).
9.
M. D.
LaHaye
,
O.
Buu
,
B.
Camarota
, and
K. C.
Schwab
,
Science
304
,
74
(
2004
).
10.
S. P.
Koenig
,
L.
Wang
,
J.
Pellegrino
, and
J. S.
Bunch
,
Nat. Nanotechnol.
7
,
728
(
2012
).
11.
J.
Lee
,
Z.
Wang
,
K.
He
,
J.
Shan
, and
P. X.-L.
Feng
,
ACS Nano
7
,
6086
(
2013
).
12.
Y.
Xu
,
C.
Chen
,
V. V.
Deshpande
,
F. A.
DiRenno
,
A.
Gondarenko
,
D. B.
Heinz
,
S.
Liu
,
P.
Kim
, and
J.
Hone
,
Appl. Phys. Lett.
97
,
243111
(
2010
).
13.
R. A.
Barton
,
B.
Ilic
,
A. M.
van der Zande
,
W. S.
Whitney
,
P. L.
McEuen
,
J. M.
Parpia
, and
H. G.
Craighead
,
Nano Lett.
11
,
1232
(
2011
).
14.
J.
Lee
and
P. X.-L.
Feng
,
IEEE International Frequency Control Symposium Proceedings
(
2012
), Vol.
1
.
15.
S.
Lee
,
C.
Chen
,
V. V.
Deshpande
,
G.-H.
Lee
,
I.
Lee
,
M.
Lekas
,
A.
Gondarenko
,
Y.-J.
Yu
,
K.
Shepard
,
P.
Kim
, and
J.
Hone
,
Appl. Phys. Lett.
102
,
153101
(
2013
).
16.
A.
Castellanos-Gomez
,
R.
van Leeuwen
,
M.
Buscema
,
H. S. J.
van der Zant
,
G. A.
Steele
, and
W. J.
Venstra
,
Adv. Mater.
25
,
6719
(
2013
).
17.
P.
Weber
,
J.
Güttinger
,
A.
Noury
,
J.
Vergara-Cruz
, and
A.
Bachtold
,
Nat. Commun.
7
,
12496
(
2016
).
18.
I.
Kozinsky
,
H. W. Ch.
Postma
,
I.
Bargatin
, and
M. L.
Roukes
,
Appl. Phys. Lett.
88
,
253101
(
2006
).
19.
R. N.
Patel
,
J. P.
Mathew
,
A.
Borah
, and
M. M.
Deshmukh
,
2D Mater.
3
,
011003
(
2016
).
20.
V.
Singh
,
S.
Sengupta
,
H. S.
Solanki
,
R.
Dhall
,
A.
Allain
,
S.
Dhara
,
P.
Pant
, and
M. M.
Deshmukh
,
Nanotechnology
21
,
165204
(
2010
).
21.
R.
Singh
,
R. J. T.
Nicholl
,
K. I.
Bolotin
, and
S.
Ghosh
,
Nano Lett.
18
,
6719
(
2018
).
22.
S.-J.
Han
,
A. V.
Garcia
,
S.
Oida
,
K. A.
Jenkins
, and
W.
Haensch
,
Nat. Commun.
5
,
3086
(
2014
).
23.
M.
Yankowitz
,
Q.
Ma
,
P.
Jarillo-Herrero
, and
B. J.
LeRoy
,
Nat. Rev. Phys.
1
,
112
(
2019
).
24.
A. K.
Geim
and
I. V.
Grigorieva
,
Nature
499
,
419
(
2013
).
25.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
,
K. L.
Shepard
, and
J.
Hone
,
Nat. Nanotechnol.
5
,
722
(
2010
).
26.
C.-H.
Lee
,
G.-H.
Lee
,
A. M.
van der Zande
,
W.
Chen
,
Y.
Li
,
M.
Han
,
X.
Cui
,
G.
Arefe
,
C.
Nuckolls
,
T. F.
Heinz
,
J.
Guo
,
J.
Hone
, and
P.
Kim
,
Nat. Nanotechnol.
9
,
676
(
2014
).
27.
L.
Wang
,
I.
Meric
,
P. Y.
Huang
,
Q.
Gao
,
Y.
Gao
,
H.
Tran
,
T.
Taniguchi
,
K.
Watanabe
,
L. M.
Campos
,
D. A.
Muller
,
J.
Guo
,
P.
Kim
,
J.
Hone
,
K. L.
Shepard
, and
C. R.
Dean
,
Science
342
,
614
(
2013
).
28.
C. R.
Dean
,
L.
Wang
,
P.
Maher
,
C.
Forsythe
,
F.
Ghahari
,
Y.
Gao
,
J.
Katoch
,
M.
Ishigami
,
P.
Moon
,
M.
Koshino
,
T.
Taniguchi
,
K.
Watanabe
,
K. L.
Shepard
,
J.
Hone
, and
P.
Kim
,
Nature
497
,
598
(
2013
).
29.
L. A.
Ponomarenko
,
R. V.
Gorbachev
,
G. L.
Yu
,
D. C.
Elias
,
R.
Jalil
,
A. A.
Patel
,
A.
Mishchenko
,
A. S.
Mayorov
,
C. R.
Woods
,
J. R.
Wallbank
,
M.
Mucha-Kruczynski
,
B. A.
Piot
,
M.
Potemski
,
I. V.
Grigorieva
,
K. S.
Novoselov
,
F.
Guinea
,
V. I.
Fal'ko
, and
A. K.
Geim
,
Nature
497
,
594
(
2013
).
30.
B.
Hunt
,
J. D.
Sanchez-Yamagishi
,
A. F.
Young
,
M.
Yankowitz
,
B. J.
LeRoy
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Moon
,
M.
Koshino
,
P.
Jarillo-Herrero
, and
R. C.
Ashoori
,
Science
340
,
1427
(
2013
).
31.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
,
Nature
556
,
43
(
2018
).
32.
M.
Will
,
M.
Hamer
,
M.
Müller
,
A.
Noury
,
P.
Weber
,
A.
Bachtold
,
R. V.
Gorbachev
,
C.
Stampfer
, and
J.
Güttinger
,
Nano Lett.
17
,
5950
(
2017
).
33.
F.
Ye
,
J.
Lee
, and
P. X.-L.
Feng
,
Nanoscale
9
,
18208
18215
(
2017
).
34.
S.
Kim
,
J.
Yu
, and
A. M.
van der Zande
,
Nano Lett.
18
,
6686
(
2018
).
35.
S.
Kim
,
E.
Annevelink
,
E.
Han
,
J.
Yu
,
P. Y.
Huang
,
E.
Ertekin
, and
A. M.
van der Zande
,
Nano Lett.
20
,
1201
(
2020
).
36.
X.
Ma
,
Q.
Liu
,
D.
Xu
,
Y.
Zhu
,
S.
Kim
,
Y.
Cui
,
L.
Zhong
, and
M.
Liu
,
Nano Lett.
17
,
6961
(
2017
).
37.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
38.
The Dow Chemical Company
, “SYLGARD™ 184 Silicone Elastomer,” Form No. 11-3184-01 C (2017), see https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/11/11-31/11-3184-sylgard-184-elastomer.pdf?iframe=true.
39.
C.
Chen
, “
Graphene nanoelectromechanical resonators and oscillators
,” Ph.D. (
Columbia University
,
2013
).
40.
T.
Wah
,
J. Acoust. Soc. Am.
34
,
275
281
(
2005
).
41.
P.
Prasad
,
N.
Arora
, and
A. K.
Naik
,
Nano Lett.
19
,
5862
(
2019
).
42.
G. A.
Steele
,
A. K.
Huttel
,
B.
Witkamp
,
M.
Poot
,
H. B.
Meerwaldt
,
L. P.
Kouwenhoven
, and
H. S. J.
van der Zant
,
Science
325
,
1103
(
2009
).
43.
S.
Jiang
,
H.
Xie
,
J.
Shan
, and
K. F.
Mak
, arXiv:2001.03153 (
2020
).
44.
H.
Suzuki
,
N.
Yamaguchi
, and
H.
Izumi
,
Acoust. Sci. Technol.
30
,
348
(
2009
).
45.
A.
Falin
,
Q.
Cai
,
E. J. G.
Santos
,
D.
Scullion
,
D.
Qian
,
R.
Zhang
,
Z.
Yang
,
S.
Huang
,
K.
Watanabe
,
T.
Taniguchi
,
M. R.
Barnett
,
Y.
Chen
,
R. S.
Ruoff
, and
L. H.
Li
,
Nat. Commun.
8
,
15815
(
2017
).
46.
C.
Chen
,
V. V.
Deshpande
,
M.
Koshino
,
S.
Lee
,
A.
Gondarenko
,
A. H.
MacDonald
,
P.
Kim
, and
J.
Hone
,
Nat. Phys.
12
,
240
(
2016
).

Supplementary Material

You do not currently have access to this content.