Coherent phonon generation by optical pump-probe experiments has enabled the study of acoustic properties at the nanoscale in planar heterostructures, plasmonic resonators, micropillars, and nanowires. Focalizing both the pump and the probe on the same spot of the sample is a critical part of pump-probe experiments. This is particularly relevant in the case of small objects. The main practical challenges for the actual implementation of this technique are stability of the spatiotemporal overlap, reproducibility of the focalization, and optical mode matching conditions. In this work, we solve these three challenges for the case of planar and micropillar optophononic cavities. We integrate the studied samples to single mode fibers lifting the need for focusing optics to excite and detect coherent acoustic phonons. The resulting reflectivity contrast of at least 66% achieved in our samples allows us to observe stable coherent phonon signals over at least a full day and signals at an extremely low excitation power of 1 μW. The monolithic sample structure is transportable and could provide a means to perform reproducible plug-and-play experiments.

1.
C.
Thomsen
,
H. T.
Grahn
,
H. J.
Maris
, and
J.
Tauc
, “
Surface generation and detection of phonons by picosecond light pulses
,”
Phys. Rev. B
34
,
4129
(
1986
).
2.
C.
Thomsen
,
J.
Strait
,
Z.
Vardeny
,
H. J.
Maris
,
J.
Tauc
, and
J. J.
Hauser
, “
Coherent phonon generation and detection by picosecond light pulses
,”
Phys. Rev. Lett.
53
,
989
(
1984
).
3.
P.
Ruello
and
V. E.
Gusev
, “
Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action
,”
Ultrasonics
56
,
21
(
2015
).
4.
A.
Fainstein
,
N. D.
Lanzillotti-Kimura
,
B.
Jusserand
, and
B.
Perrin
, “
Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light
,”
Phys. Rev. Lett.
110
,
037403
(
2013
).
5.
R. P.
Beardsley
,
A. V.
Akimov
,
M.
Henini
, and
A. J.
Kent
, “
Coherent terahertz sound amplification and spectral line narrowing in a stark ladder superlattice
,”
Phys. Rev. Lett.
104
,
085501
(
2010
).
6.
T.
Czerniuk
,
J.
Tepper
,
A. V.
Akimov
,
S.
Unsleber
,
C.
Schneider
,
M.
Kamp
,
S.
Höfling
,
D. R.
Yakovlev
, and
M.
Bayer
, “
Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars
,”
Appl. Phys. Lett.
106
,
041103
(
2015
).
7.
J. V.
Jäger
,
A. V.
Scherbakov
,
B. A.
Glavin
,
A. S.
Salasyuk
,
R. P.
Campion
,
A. W.
Rushforth
,
D. R.
Yakovlev
,
A. V.
Akimov
, and
M.
Bayer
, “
Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons
,”
Phys. Rev. B
92
,
020404
(
2015
).
8.
C.
Brüggemann
,
A. V.
Akimov
,
A. V.
Scherbakov
,
M.
Bombeck
,
C.
Schneider
,
S.
Höfling
,
A.
Forchel
,
D. R.
Yakovlev
, and
M.
Bayer
, “
Laser mode feeding by shaking quantum dots in a planar microcavity
,”
Nat. Photonics
6
,
30
(
2012
).
9.
O.
Matsuda
,
T.
Tachizaki
,
T.
Fukui
,
J. J.
Baumberg
, and
O. B.
Wright
, “
Acoustic phonon generation and detection in GaAs∕Al0.3Ga0.7As quantum wells with picosecond laser pulses
,”
Phys. Rev. B
71
,
115330
(
2005
).
10.
C.-K.
Sun
,
J.-C.
Liang
, and
X.-Y.
Yu
, “
Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields
,”
Phys. Rev. Lett.
84
,
179
(
2000
).
11.
A.
Bartels
,
T.
Dekorsy
,
H.
Kurz
, and
K.
Köhler
, “
Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection
,”
Phys. Rev. Lett.
82
,
1044
(
1999
).
12.
G.
Arregui
,
O.
Ortíz
,
M.
Esmann
,
C. M.
Sotomayor-Torres
,
C.
Gomez-Carbonell
,
O.
Mauguin
,
B.
Perrin
,
A.
Lemaître
,
P. D.
García
, and
N. D.
Lanzillotti-Kimura
, “
Coherent generation and detection of acoustic phonons in topological nanocavities
,”
APL Photonics
4
,
030805
(
2019
).
13.
F.
Della Picca
,
R.
Berte
,
M.
Rahmani
,
P.
Albella
,
J. M.
Bujjamer
,
M.
Poblet
,
E.
Cortés
,
S. A.
Maier
, and
A. V.
Bragas
, “
Tailored hypersound generation in single plasmonic nanoantennas
,”
Nano Lett.
16
,
1428
(
2016
).
14.
K.
O'Brien
,
N. D.
Lanzillotti-Kimura
,
J.
Rho
,
H.
Suchowski
,
X.
Yin
, and
X.
Zhang
, “
Ultrafast acousto-plasmonic control and sensing in complex nanostructures
,”
Nat. Commun.
5
,
4042
(
2014
).
15.
F.
Medeghini
,
A.
Crut
,
M.
Gandolfi
,
F.
Rossella
,
P.
Maioli
,
F.
Vallée
,
F.
Banfi
, and
N.
Del Fatti
, “
Controlling the quality factor of a single acoustic nanoresonator by tuning its morphology
,”
Nano Lett.
18
,
5159
(
2018
).
16.
F.
Xu
,
Y.
Guillet
,
S.
Ravaine
, and
B.
Audoin
, “
All-optical in-depth detection of the acoustic wave emitted by a single gold nanorod
,”
Phys. Rev. B
97
,
165412
(
2018
).
17.
T. A.
Kelf
,
Y.
Tanaka
,
O.
Matsuda
,
E. M.
Larsson
,
D. S.
Sutherland
, and
O. B.
Wright
, “
Ultrafast vibrations of gold nanorings
,”
Nano Lett.
11
,
3893
(
2011
).
18.
A.
Vertikov
,
M.
Kuball
,
A. V.
Nurmikko
, and
H. J.
Maris
, “
Time‐resolved Pump‐probe experiments with subwavelength lateral resolution
,”
Appl. Phys. Lett.
69
,
2465
(
1996
).
19.
A.
Viel
,
E.
Péronne
,
O.
Sénépart
,
L.
Becerra
,
C.
Legay
,
F.
Semprez
,
L.
Trichet
,
T.
Coradin
,
A.
Hamraoui
, and
L.
Belliard
, “
Picosecond ultrasounds as elasticity probes in neuron-like cells models
,”
Appl. Phys. Lett.
115
,
213701
(
2019
).
20.
S.
Anguiano
,
A. E.
Bruchhausen
,
B.
Jusserand
,
I.
Favero
,
F. R.
Lamberti
,
L.
Lanco
,
I.
Sagnes
,
A.
Lemaître
,
N. D.
Lanzillotti-Kimura
,
P.
Senellart
, and
A.
Fainstein
, “
Micropillar resonators for optomechanics in the extremely high 19–95-GHz frequency range
,”
Phys. Rev. Lett.
118
,
263901
(
2017
).
21.
S.
Anguiano
,
P.
Sesin
,
A. E.
Bruchhausen
,
F. R.
Lamberti
,
I.
Favero
,
M.
Esmann
,
I.
Sagnes
,
A.
Lemaître
,
N. D.
Lanzillotti-Kimura
,
P.
Senellart
, and
A.
Fainstein
, “
Scaling rules in optomechanical semiconductor micropillars
,”
Phys. Rev. A
98
,
063810
(
2018
).
22.
C.
Lagoin
,
B.
Perrin
,
P.
Atkinson
, and
D.
Garcia-Sanchez
, “
High spectral resolution of GaAs/AlAs phononic cavities by subharmonic resonant pump-probe excitation
,”
Phys. Rev. B
99
,
060101
(
2019
).
23.
L.
Belliard
,
T. W.
Cornelius
,
B.
Perrin
,
N.
Kacemi
,
L.
Becerra
,
O.
Thomas
,
M. E.
Toimil-Molares
, and
M.
Cassinelli
, “
Vibrational response of free standing single copper nanowire through transient reflectivity microscopy
,”
J. Appl. Phys.
114
,
193509
(
2013
).
24.
A.
Bartels
,
R.
Cerna
,
C.
Kistner
,
A.
Thoma
,
F.
Hudert
,
C.
Janke
, and
T.
Dekorsy
, “
Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling
,”
Rev. Sci. Instrum.
78
,
035107
(
2007
).
25.
V. E.
Gusev
and
P.
Ruello
, “
Advances in applications of time-domain Brillouin scattering for nanoscale imaging
,”
Appl. Phys. Rev.
5
,
031101
(
2018
).
26.
F. R.
Lamberti
,
Q.
Yao
,
L.
Lanco
,
D. T.
Nguyen
,
M.
Esmann
,
A.
Fainstein
,
P.
Sesin
,
S.
Anguiano
,
V.
Villafañe
,
A.
Bruchhausen
,
P.
Senellart
,
I.
Favero
, and
N. D.
Lanzillotti-Kimura
, “
Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range
,”
Opt. Express
25
,
24437
(
2017
).
27.
M.
Esmann
,
F. R.
Lamberti
,
A.
Harouri
,
L.
Lanco
,
I.
Sagnes
,
I.
Favero
,
G.
Aubin
,
C.
Gomez-Carbonell
,
A.
Lemaître
,
O.
Krebs
,
P.
Senellart
, and
N. D.
Lanzillotti-Kimura
, “
Brillouin scattering in hybrid optophononic Bragg micropillar resonators at 300 GHz
,”
Optica
6
,
854
(
2019
).
28.
F.
Kargar
,
B.
Debnath
,
J.-P.
Kakko
,
A.
Säynätjoki
,
H.
Lipsanen
,
D. L.
Nika
,
R. K.
Lake
, and
A. A.
Balandin
, “
Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires
,”
Nat. Commun.
7
,
13400
(
2016
).
29.
D.
Garcia-Sanchez
,
S.
Déleglise
,
J.-L.
Thomas
,
P.
Atkinson
,
C.
Lagoin
, and
B.
Perrin
, “
Acoustic confinement in superlattice cavities
,”
Phys. Rev. A
94
,
033813
(
2016
).
30.
C. Y. T.
Huang
,
F.
Kargar
,
T.
Debnath
,
B.
Debnath
,
M. D.
Valentin
,
R.
Synowicki
,
S.
Schoeche
,
R. K.
Lake
, and
A. A.
Balandin
, “
Phononic and photonic properties of shape-engineered silicon nanoscale pillar arrays
,”
Nanotechnology
31
,
30LT01
(
2020
).
31.
S.
Volz
,
J.
Ordonez-Miranda
,
A.
Shchepetov
,
M.
Prunnila
,
J.
Ahopelto
,
T.
Pezeril
,
G.
Vaudel
,
V.
Gusev
,
P.
Ruello
,
E. M.
Weig
,
M.
Schubert
,
M.
Hettich
,
M.
Grossman
,
T.
Dekorsy
,
F.
Alzina
,
B.
Graczykowski
,
E.
Chavez-Angel
,
J.
Sebastian Reparaz
,
M. R.
Wagner
,
C. M.
Sotomayor-Torres
,
S.
Xiong
,
S.
Neogi
, and
D.
Donadio
, “
Nanophononics: State of the art and perspectives
,”
Eur. Phys. J. B
89
,
15
(
2016
).
32.
O.
Ortíz
,
M.
Esmann
, and
N. D.
Lanzillotti-Kimura
, “
Phonon engineering with superlattices: Generalized nanomechanical potentials
,”
Phys. Rev. B
100
,
085430
(
2019
).
33.
A. A.
Balandin
, “
Nanophononics: Phonon engineering in nanostructures and nanodevices
,”
J. Nanosci. Nanotechnol.
5
,
1015
(
2005
).
34.
M.
Esmann
,
F. R.
Lamberti
,
P.
Senellart
,
I.
Favero
,
O.
Krebs
,
L.
Lanco
,
C.
Gomez Carbonell
,
A.
Lemaître
, and
N. D.
Lanzillotti-Kimura
, “
Topological nanophononic states by band inversion
,”
Phys. Rev. B
97
,
155422
(
2018
).
35.
A. V.
Akimov
,
A. V.
Scherbakov
,
D. R.
Yakovlev
,
C. T.
Foxon
, and
M.
Bayer
, “
Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures
,”
Phys. Rev. Lett.
97
,
037401
(
2006
).
36.
B. J.
Eggleton
,
P. S.
Westbrook
,
R. S.
Windeler
,
S.
Spälter
, and
T. A.
Strasser
, “
Grating resonances in air–silica microstructured optical fibers
,”
Opt. Lett.
24
,
1460
(
1999
).
37.
A.
Godet
,
A.
Ndao
,
T.
Sylvestre
,
V.
Pecheur
,
S.
Lebrun
,
G.
Pauliat
,
J.-C.
Beugnot
, and
K. P.
Huy
, “
Brillouin spectroscopy of optical microfibers and nanofibers
,”
Optica
4
,
1232
(
2017
).
38.
M.
Merklein
,
B.
Stiller
,
K.
Vu
,
S. J.
Madden
, and
B. J.
Eggleton
, “
A chip-integrated coherent photonic-phononic memory
,”
Nat. Commun.
8
,
574
(
2017
).
39.
Y.
Stern
,
K.
Zhong
,
T.
Schneider
,
R.
Zhang
,
Y.
Ben-Ezra
,
M.
Tur
, and
A.
Zadok
, “
Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering
,”
Photonics Res.
2
,
B18
(
2014
).
40.
R.
Pant
,
C. G.
Poulton
,
D.-Y.
Choi
,
H.
Mcfarlane
,
S.
Hile
,
E.
Li
,
L.
Thevenaz
,
B.
Luther-Davies
,
S. J.
Madden
, and
B. J.
Eggleton
, “
On-chip stimulated Brillouin scattering
,”
Opt. Express
19
,
8285
(
2011
).
41.
D.
Cadeddu
,
J.
Teissier
,
F. R.
Braakman
,
N.
Gregersen
,
P.
Stepanov
,
J.-M.
Gérard
,
J.
Claudon
,
R. J.
Warburton
,
M.
Poggio
, and
M.
Munsch
, “
A fiber-coupled quantum-dot on a photonic tip
,”
Appl. Phys. Lett.
108
,
011112
(
2016
).
42.
F.
Haupt
,
S. S. R.
Oemrawsingh
,
S. M.
Thon
,
H.
Kim
,
D.
Kleckner
,
D.
Ding
,
D. J.
Suntrup
,
P. M.
Petroff
, and
D.
Bouwmeester
, “
Fiber-connectorized micropillar cavities
,”
Appl. Phys. Lett.
97
,
131113
(
2010
).
43.
A.
Schlehahn
,
S.
Fischbach
,
R.
Schmidt
,
A.
Kaganskiy
,
A.
Strittmatter
,
S.
Rodt
,
T.
Heindel
, and
S.
Reitzenstein
, “
A stand-alone fiber-coupled single-photon source
,”
Sci. Rep.
8
,
1340
(
2018
).
44.
H.
Snijders
,
J. A.
Frey
,
J.
Norman
,
V. P.
Post
,
A. C.
Gossard
,
J. E.
Bowers
,
M. P.
van Exter
,
W.
Löffler
, and
D.
Bouwmeester
, “
Fiber-coupled cavity-QED source of identical single photons
,”
Phys. Rev. Appl.
9
,
031002
(
2018
).
45.
S.
Anguiano
,
A. E.
Bruchhausen
,
I.
Favero
,
I.
Sagnes
,
A.
Lemaître
,
N. D.
Lanzillotti-Kimura
, and
A.
Fainstein
, “
Optical cavity mode dynamics and coherent phonon generation in high-Q micropillar resonators
,”
Phys. Rev. A
98
,
013816
(
2018
).
46.
M.
Hamoumi
,
P. E.
Allain
,
W.
Hease
,
E.
Gil-Santos
,
L.
Morgenroth
,
B.
Gérard
,
A.
Lemaître
,
G.
Leo
, and
I.
Favero
, “
Microscopic nanomechanical dissipation in gallium arsenide resonators
,”
Phys. Rev. Lett.
120
,
223601
(
2018
).
47.
P.
Sesin
,
P.
Soubelet
,
V.
Villafañe
,
A. E.
Bruchhausen
,
B.
Jusserand
,
A.
Lemaître
,
N. D.
Lanzillotti-Kimura
, and
A.
Fainstein
, “
Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators
,”
Phys. Rev. B
92
,
075307
(
2015
).
You do not currently have access to this content.