Acoustical tweezers are devices that use acoustic radiation forces to trap and maneuver objects. This Perspective focuses on the biomedical applications of these devices, and hence, the target objects include cells, cell clusters, and micro-organisms. These objects are of microscopic size and have acoustic properties similar to the water-like biological media in which they are found. The character of the acoustic radiation forces is first discussed as is a selection of the expanding range of biomedical applications. Future directions are then described, which include increased integration of acoustical tweezers with other biomedical technology, approaches that allow increased functionality at the single-cell level, and a move toward quantitative measurements such as cell stiffness.

1.
D. J.
Collins
,
B.
Morahan
,
J.
Garcia-Bustos
,
C.
Doerig
,
M.
Plebanski
, and
A.
Neild
, “
Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves
,”
Nat. Commun.
6
,
8686
(
2015
).
2.
G. T.
Silva
,
J. H.
Lopes
,
J. P.
Leão-Neto
,
M. K.
Nichols
, and
B. W.
Drinkwater
, “
Particle patterning by ultrasonic standing waves in a rectangular cavity
,”
Phys. Rev. Appl.
11
,
054044
(
2019
).
3.
P.
Hahn
,
I.
Leibacher
,
T.
Baasch
, and
J.
Dual
, “
Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles
,”
Lab Chip
15
,
4302
4313
(
2015
).
4.
H.
Bruus
, “
Acoustofluidics 10: Scaling laws in acoustophoresis
,”
Lab Chip
12
,
1578
(
2012
).
5.
L. P.
Gor'kov
, “
On the forces acting on a small particle in an acoustical field in an ideal fluid
,”
Sov. Phys.-Dokl.
6
,
773
775
(
1962
).
6.
H.
Bruus
, “
Acoustofluidics 7: The acoustic radiation force on small particles
,”
Lab Chip
12
,
1014
(
2012
).
7.
P.
Glynne-Jones
,
R. J.
Boltryk
, and
M.
Hill
, “
Acoustofluidics 9: Modelling and applications of planar resonant devices for acoustic particle manipulation
,”
Lab Chip
12
,
1417
1426
(
2012
).
8.
X.
Chen
and
R. E.
Apfel
, “
Radiation force on a spherical object in an axisymmetric wave field and its application to the calibration of high-frequency transducers
,”
J. Acoust. Soc. Am.
99
,
713
724
(
1996
).
9.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere
,”
J. Acoust. Soc. Am.
133
,
25
36
(
2013
).
10.
P.
Glynne-Jones
,
P. P.
Mishra
,
R. J.
Boltryk
, and
M.
Hill
, “
Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry
,”
J. Acoust. Soc. Am.
133
,
1885
1893
(
2013
).
11.
J. T.
Karlsen
and
H.
Bruus
, “
Forces acting on a small particle in an acoustical field in a thermoviscous fluid
,”
Phys. Rev. E
92
,
043010
(
2015
).
12.
G. T.
Silva
,
L.
Tian
,
A.
Franklin
,
X.
Wang
,
X.
Han
,
S.
Mann
, and
B. W.
Drinkwater
, “
Acoustic deformation for the extraction of mechanical properties of lipid vesicle populations
,”
Phys. Rev. E
99
,
063002
(
2019
).
13.
Z.
Hong
,
J.
Zhang
, and
B. W.
Drinkwater
, “
Observation of orbital angular momentum transfer from bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures
,”
Phys. Rev. Lett.
114
,
214301
(
2015
).
14.
D.
Baresch
,
J. L.
Thomas
, and
R.
Marchiano
, “
Orbital angular momentum transfer to stably trapped elastic particles in acoustical vortex beams
,”
Phys. Rev. Lett.
121
,
074301
(
2018
).
15.
A.
Marzo
,
M.
Caleap
, and
B. W.
Drinkwater
, “
Acoustic virtual vortices with tunable orbital angular momentum for trapping of Mie particles
,”
Phys. Rev. Lett.
120
,
044301
(
2018
).
16.
A.
Ku
,
H. C.
Lim
,
M.
Evander
,
H.
Lilja
,
T.
Laurell
,
S.
Scheding
, and
Y.
Ceder
, “
Acoustic enrichment of extracellular vesicles from biological fluids
,”
Anal. Chem.
90
,
8011
8019
(
2018
).
17.
L.
Tian
,
N.
Martin
,
P. G.
Bassindale
,
A. J.
Patil
,
M.
Li
,
A.
Barnes
,
B. W.
Drinkwater
, and
S.
Mann
, “
Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning
,”
Nat. Commun.
7
,
13068
(
2016
).
18.
C. R. P.
Courtney
,
C. E. M.
Demore
,
H.
Wu
,
A.
Grinenko
,
P. D.
Wilcox
,
S.
Cochran
, and
B. W.
Drinkwater
, “
Independent trapping and manipulation of microparticles using dexterous acoustic tweezers
,”
Appl. Phys. Lett.
104
,
154103
(
2014
).
19.
A.
Franklin
,
A.
Marzo
,
R.
Malkin
, and
B. W.
Drinkwater
, “
Three-dimensional ultrasonic trapping of micro-particles in water with a simple and compact two-element transducer
,”
Appl. Phys. Lett.
111
,
094101
(
2017
).
20.
M. A.
Ghanem
,
A. D.
Maxwell
,
Y.-N.
Wang
,
B. W.
Cunitz
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
, and
M. R.
Bailey
, “
Noninvasive acoustic manipulation of objects in a living body
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
16848
16855
(
2020
).
21.
J. J.
Hawkes
and
W.
Coakley
, “
Force field particle filter, combining ultrasound standing waves and laminar flow
,”
Sens. Actuators, B
75
,
213
222
(
2001
).
22.
A.
Lenshof
,
C.
Magnusson
, and
T.
Laurell
, “
Acoustofluidics 8: Applications of acoustophoresis in continuous flow microsystems
,”
Lab Chip
12
,
1210
1223
(
2012
).
23.
G.
Sitters
,
D.
Kamsma
,
G.
Thalhammer
,
M.
Ritsch-Marte
,
E. J.
Peterman
, and
G. J.
Wuite
, “
Acoustic force spectroscopy
,”
Nat. Methods
12
,
47
50
(
2015
).
24.
S.
Zhao
,
M.
Wu
,
S.
Yang
,
Y.
Wu
,
Y.
Gu
,
C.
Chen
,
J.
Ye
,
Z.
Xie
,
Z.
Tian
,
H.
Bachman
,
P. H.
Huang
,
J.
Xia
,
P.
Zhang
,
H.
Zhang
, and
T. J.
Huang
, “
A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers
,”
Lab Chip
20
,
1298
1308
(
2020
).
25.
J. P. K.
Armstrong
,
J. L.
Puetzer
,
A.
Serio
,
A. G.
Guex
,
M.
Kapnisi
,
A.
Breant
,
Y.
Zong
,
V.
Assal
,
S. C.
Skaalure
,
O.
King
,
T.
Murty
,
C.
Meinert
,
A. C.
Franklin
,
P. G.
Bassindale
,
M. K.
Nichols
,
C. M.
Terracciano
,
D. W.
Hutmacher
,
B. W.
Drinkwater
,
T. J.
Klein
,
A. W.
Perriman
, and
M. M.
Stevens
, “
Engineering anisotropic muscle tissue using acoustic cell patterning
,”
Adv. Mater.
30
,
1802649
(
2018
).
26.
X.
Wang
,
L.
Tian
,
Y.
Ren
,
Z.
Zhao
,
H.
Du
,
Z.
Zhang
,
B. W.
Drinkwater
,
S.
Mann
, and
X.
Han
, “
Chemical information exchange in organized protocells and natural cell assemblies with controllable spatial positions
,”
Small
16
,
1906394
(
2020
).
27.
X.
Ding
,
S.-C. S.
Lin
,
B.
Kiraly
,
H.
Yue
,
S.
Li
,
I.-K.
Chiang
,
J.
Shi
,
S. J.
Benkovic
, and
T. J.
Huang
, “
On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
11105
11109
(
2012
).
28.
F.
Gesellchen
,
A. L.
Bernassau
,
T.
Déjardin
,
D. R. S.
Cumming
, and
M. O.
Riehle
, “
Cell patterning with a heptagon acoustic tweezer—Application in neurite guidance
,”
Lab Chip
14
(
13
),
2266
2275
(
2014
).
29.
M.-S.
Scholz
,
B. W.
Drinkwater
,
T. M.
Llewellyn-Jones
, and
R. S.
Trask
, “
Counterpropagating wave acoustic particle manipulation device for the effective manufacture of composite materials
,”
IEEE Trans. Ultrason., Ferroelectr., Frequency Control
62
,
1845
1855
(
2015
).
30.
A.
Grinenko
,
P. D.
Wilcox
,
C. R. P.
Courtney
, and
B. W.
Drinkwater
, “
Proof of principle study of ultrasonic particle manipulation by a circular array device
,”
Proc. R. Soc. A
468
,
3571
3586
(
2012
).
31.
A.
Riaud
,
M.
Baudoin
,
J.-L.
Thomas
, and
O.
Bou Matar
, “
SAW synthesis with IDTs array and the inverse filter: Toward a versatile SAW toolbox for microfluidics and biological applications
,”
IEEE Trans. Ultrason., Ferroelectr., Frequency Control
63
,
1601
1607
(
2016
).
32.
S. J.
Raymond
,
D. J.
Collins
,
R.
O'Rorke
,
M.
Tayebi
,
Y.
Ai
, and
J.
Williams
, “
A deep learning approach for designed diffraction-based acoustic patterning in microchannels
,”
Sci. Rep.
10
,
8745
(
2020
).
33.
J.
Wu
, “
Acoustical tweezers
,”
J. Acoust. Soc. Am.
89
,
2140
2143
(
1991
).
34.
J.
Lee
,
S.-Y.
Teh
,
A.
Lee
,
H. H.
Kim
,
C.
Lee
, and
K. K.
Shung
, “
Single beam acoustic trapping
,”
Appl. Phys. Lett.
95
,
073701
(
2009
).
35.
A.
Marzo
,
S. A.
Seah
,
B. W.
Drinkwater
,
D. R.
Sahoo
,
B.
Long
, and
S.
Subramanian
, “
Holographic acoustic elements for manipulation of levitated objects
,”
Nat. Commun.
6
,
8661
(
2015
).
36.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers
,”
Phys. Rev. Lett.
116
,
024301
(
2016
).
37.
M.
Baudoin
,
J.-C.
Gerbedoen
,
A.
Riaud
,
O. B.
Matar
,
N.
Smagin
, and
J.-L.
Thomas
, “
Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers
,”
Sci. Adv.
5
,
eaav1967
(
2019
).
38.
M.
Baudoin
,
J.-L.
Thomas
,
R. A.
Sahely
,
J.-C.
Gerbedoen
,
Z.
Gong
,
A.
Sivery
,
O. B.
Matar
,
N.
Smagin
,
P.
Favreau
, and
A.
Vlandas
, “
Spatially selective manipulation of cells with single-beam acoustical tweezers
,”
Nat. Commun.
11
,
4244
(
2020
).
39.
L.
Cox
,
K.
Melde
,
A.
Croxford
,
P.
Fischer
, and
B. W.
Drinkwater
, “
Acoustic hologram enhanced phased arrays for ultrasonic particle manipulation
,”
Phys. Rev. Appl.
12
,
064055
(
2019
).
40.
D.
Baresch
and
V.
Garbin
, “
Acoustic trapping of microbubbles in complex environments and controlled payload release
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
15490
15496
(
2020
).
41.
M.
Wiklund
, “
Acoustofluidics 12: Biocompatibility and cell viability in microfluidic acoustic resonators
,”
Lab Chip
12
,
2018
2028
(
2012
).
42.
C.
Devendran
,
J.
Carthew
,
J. E.
Frith
, and
A.
Neild
, “
Cell adhesion, morphology, and metabolism variation via acoustic exposure within microfluidic cell handling systems
,”
Adv. Sci.
6
,
1902326
(
2019
).
43.
A.
Marzo
and
B. W.
Drinkwater
, “
Holographic acoustic tweezers
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
84
89
(
2019
).
44.
S.
Guo
,
X.
Guo
,
X.
Wang
,
X.
Du
,
P.
Wu
,
A.
Bouakaz
, and
M.
Wan
, “
Manipulation of nanodroplets via a nonuniform focused acoustic vortex
,”
Phys. Rev. Appl.
13
,
034009
(
2020
).
45.
K.
Melde
,
A. G.
Mark
,
T.
Qiu
, and
P.
Fischer
, “
Holograms for acoustics
,”
Nature
537
,
518
522
(
2016
).
46.
W.
Cui
,
H.
Zhang
,
H.
Zhang
,
Y.
Yang
,
M.
He
,
H.
Qu
,
W.
Pang
,
D.
Zhang
, and
X.
Duan
, “
Localized ultrahigh frequency acoustic fields induced micro-vortices for submilliseconds microfluidic mixing
,”
Appl. Phys. Lett.
109
,
253503
(
2016
).
You do not currently have access to this content.