HfO2-based ferroelectrics have dramatically changed the application perspectives of polarization-switching materials for information processing and storage. Their CMOS compatibility and preservation of high reversible polarization down to a few nanometer thickness make them attractive for various device concepts including non-volatile memories and negative-capacitance-enhanced steep-slope transistors. In the context of these applications, the long-standing discussion of intrinsic (thermodynamic) or extrinsic nuclei-limited switching (NLS) in ferroelectrics has recently gained importance. In particular, the negative capacitance effect that is formally described by the Landau–Ginzburg–Devonshire formalism implies the intrinsic polarization switching driven by the thermodynamic coercive field. On the other hand, recent studies reported the nucleation-limited extrinsic switching, which does not result in the hysteresis-free negative capacitance effect. Here, we analyze the polarization response in the nanometer scale on the ferroelectric/dielectric bilayer where the negative capacitance has been previously demonstrated. Our analysis of the two limiting cases of quasi-static switching and the earlier reported ultra-fast polarization response supports the intrinsic polarization reversal scenario. The compatibility of this mechanism with the previously reported NLS region-by-region switching with remarkably low domain wall velocity is addressed. Our results confirm the usability of CMOS-compatible polycrystalline HZO ferroelectric films for gates operating in the negative-capacitance regime. Furthermore, they point towards possible solutions for optimizing their switching properties for applications including memories.

1.
R.
Landauer
, “
Can capacitance be negative?
,”
Collect. Phenom.
2
,
167
(
1976
).
2.
S.
Salahuddin
and
S.
Dattat
, “
Use of negative capacitance to provide voltage amplification for low power nanoscale devices
,”
Nano Lett.
8
(
2
),
405
410
(
2008
).
3.
A. I.
Khan
,
K.
Chatterjee
,
J. P.
Duarte
,
Z. Y.
Lu
,
A.
Sachid
,
S.
Khandelwal
,
R.
Ramesh
,
C. M.
Hu
, and
S.
Salahuddin
, “
Negative capacitance in short-channel finfets externally connected to an epitaxial ferroelectric capacitor
,”
IEEE Electron Device Lett.
37
(
1
),
111
114
(
2016
).
4.
A.
Saeidi
,
F.
Jazaeri
,
F.
Bellando
,
I.
Stolichnov
,
G. V.
Luong
,
Q.-T.
Zhao
,
S.
Mantl
,
C. C.
Enz
, and
A. M.
Ionescu
, “
Negative capacitance as performance booster for tunnel FETs and MOSFETs: An experimental study
,”
IEEE Electron Device Lett.
38
(
10
),
1485
1488
(
2017
).
5.
J.
Iniguez
,
P.
Zubko
,
I.
Luk'yanchuk
, and
A.
Cano
, “
Ferroelectric negative capacitance
,”
Nat. Rev. Mater.
4
(
4
),
243
256
(
2019
).
6.
E.
Yurchuk
,
J.
Mueller
,
J.
Paul
,
T.
Schloesser
,
D.
Martin
,
R.
Hoffmann
,
S.
Mueller
,
S.
Slesazeck
,
U.
Schroeeder
,
R.
Boschke
,
R.
van Bentum
, and
T.
Mikolajick
, “
Impact of scaling on the performance of HfO2-based ferroelectric field effect transistors
,”
IEEE Trans. Electron Devices
61
(
11
),
3699
3706
(
2014
).
7.
M.
Hoffmann
,
M.
Pešić
,
K.
Chatterjee
,
A. I.
Khan
,
S.
Salahuddin
,
S.
Slesazeck
,
U.
Schroeder
, and
T.
Mikolajick
, “
Direct observation of negative capacitance in polycrystalline ferroelectric HfO2
,”
Adv. Funct. Mater.
26
(
47
),
8643
8649
(
2016
).
8.
M.
Hoffmann
,
F. P. G.
Fengler
,
M.
Herzig
,
T.
Mittmann
,
B.
Max
,
U.
Schroeder
,
R.
Negrea
,
L.
Pintilie
,
S.
Slesazeck
, and
T.
Mikolajick
, “
Unveiling the double-well energy landscape in a ferroelectric layer
,”
Nature
565
(
7740
),
464
(
2019
).
9.
D.
Kwon
,
S.
Cheema
,
N.
Shanker
,
K.
Chatterjee
,
Y.-H.
Liao
,
A. J.
Tan
,
C.
Hu
, and
S.
Salahuddin
, “
Negative capacitance FET with 1.8-Nm-thick Zr-doped HfO2 Oxide
,”
IEEE Electron Device Lett.
40
(
6
),
993
996
(
2019
).
10.
M. N. K.
Alam
,
P.
Roussel
,
M.
Heyns
, and
J.
Van Houdt
, “
Positive non-linear capacitance: The origin of the steep subthreshold-slope in ferroelectric FETs
,”
Sci. Rep.
9
,
14957
(
2019
).
11.
R.
Landauer
,
D.
Young
, and
M.
Drougard
, “
Polarization reversal in the barium titanate hysteresis loop
,”
J. Appl. Phys.
27
(
7
),
752
758
(
1956
).
12.
A.
Tagantsev
,
L. E.
Cross
, and
J.
Fousek
,
Domains in Ferroic Crystals and Thin Films
(
Springer-Verlag
,
New York
,
2010
).
13.
P.
Buragohain
,
C.
Richter
,
T.
Schenk
,
H.
Lu
,
T.
Mikolajick
,
U.
Schroeder
, and
A.
Gruverman
, “
Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors
,”
Appl. Phys. Lett.
112
(
22
),
222901
(
2018
).
14.
H.
Mulaosmanovic
,
J.
Ocker
,
S.
Müller
,
U.
Schroeder
,
J.
Müller
,
P.
Polakowski
,
S.
Flachowsky
,
R.
van Bentum
,
T.
Mikolajick
, and
S.
Slesazeck
, “
Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors
,”
ACS Appl. Mater. Interfaces
9
(
4
),
3792
3798
(
2017
).
15.
D. J.
Jung
,
M.
Dawber
,
J. F.
Scott
,
L. J.
Sinnamon
, and
J. M.
Gregg
, “
Switching dynamics in ferroelectric thin films: An experimental survey
,”
Integr. Ferroelectr.
48
,
59
68
(
2002
).
16.
I.
Stolichnov
,
M.
Cavalieri
,
E.
Colla
,
T.
Schenk
,
T.
Mittmann
,
T.
Mikolajick
,
U.
Schroeder
, and
A. M.
Ionescu
, “
Genuinely ferroelectric sub-1-Volt-switchable nanodomains in HfxZr(1−x)O2 ultrathin capacitors
,”
ACS Appl. Mater. Interfaces
10
(
36
),
30514
30521
(
2018
).
17.
A. K.
Tagantsev
and
I. A.
Stolichnov
, “
Injection-controlled size effect on switching of ferroelectric thin films
,”
Appl. Phys. Lett.
74
(
9
),
1326
1328
(
1999
).
You do not currently have access to this content.