This paper demonstrates a resonant accelerometer employing weakly coupled resonators for inertial force transduction. An ultra-low virtual mode coupling is established by employing the parametric pump in the coupled resonators to enhance the parametric sensitivity. This paper proposes that the amplitude of the driven resonator can be used for monitoring the input acceleration in a limited linear range around the veering point. In addition to the high-sensitivity improvement, the measurement complexity is also considerably reduced compared to the previous amplitude ratio readout sensors. The sensitivity is adjustable by changing the parametric pumping amplitude. The experimental results show that the noise power spectral density is ∼230 ng/√Hz, which is the best reported noise floor for resonant accelerometers based on weakly coupled resonators.

1.
C. T.
Nguyen
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
54
,
251
(
2007
).
2.
R.
Middlemiss
,
A.
Samarelli
,
D.
Paul
,
J.
Hough
,
S.
Rowan
, and
G.
Hammond
,
Nature
531
,
614
(
2016
).
3.
D.
Chen
,
J.
Zhao
,
Y.
Wang
,
Z.
Xu
, and
J.
Xie
,
Appl. Phys. Lett.
112
,
013502
(
2018
).
4.
D.
Chen
,
H.
Zhang
,
J.
Sun
,
M.
Pandit
,
G.
Sobreviela
,
Y.
Wang
,
Q.
Zhang
,
X.
Chen
,
A.
Seshia
, and
J.
Xie
,
Phys. Rev. Appl.
14
,
014001
(
2020
).
5.
H.
Okamoto
,
A.
Gourgout
,
C. Y.
Chang
,
K.
Onomitsu
,
I.
Mahboob
,
E. Y.
Chang
, and
H.
Yamaguchi
, “
Coherent phonon manipulation in coupled mechanical resonators
,”
Nat. Phys.
9
,
480
484
(
2013
).
6.
R.
Zhao
,
L.
Li
,
S.
Yang
,
W.
Bao
,
Y.
Xia
,
P.
Ashby
,
Y.
Wang
, and
X.
Zhang
, “
Stable Casimir equilibria and quantum trapping
,”
Science
364
,
984
(
2019
).
7.
A. A.
Seshia
,
M.
Palaniapan
,
T. A.
Roessig
,
R. T.
Howe
,
R. W.
Gooch
,
T. R.
Schimert
, and
S.
Montague
, “
A vacuum packaged surface micromachined resonant accelerometer
,”
J. Microelectromech. Syst.
11
,
784
793
(
2002
).
8.
J.
Zhao
,
X.
Wang
,
Y.
Zhao
,
G. M.
Xia
,
A. P.
Qiu
,
Y.
Su
, and
Y. P.
Xu
, “
A 0.23-μg bias instability and 1-μg/√Hz acceleration noise density silicon oscillating accelerometer with embedded frequency-to-digital converter in PLL
,”
IEEE J. Solid-State Circuits
52
,
1053
1065
(
2017
).
9.
H.
Ding
,
Y.
Ma
,
Y.
Guan
,
B. F.
Ju
, and
J.
Xie
, “
Duplex mode tilt measurements based on a MEMS biaxial resonant accelerometer
,”
Sens. Actuators, A
296
,
222
234
(
2019
).
10.
C.
Comi
,
A.
Corigliano
,
G.
Langfelder
,
A.
Longoni
,
A.
Tocchio
, and
B.
Simoni
, “
A resonant microaccelerometer with high sensitivity operating in an oscillating circuit
,”
J. Microelectromech. Syst.
19
,
1140
1152
(
2010
).
11.
Y.
Yin
,
Z.
Fang
,
F.
Han
,
B.
Yan
,
J.
Dong
, and
Q.
Wu
, “
Design and test of a micromachined resonant accelerometer with high scale factor and low noise
,”
Sens. Actuators, A
268
,
52
60
(
2017
).
12.
X.
Zou
,
P.
Thiruvenkatanathan
, and
A. A.
Seshia
, “
A seismic-grade resonant MEMS accelerometer
,”
J. Microelectromech. Syst.
23
,
768
770
(
2014
).
13.
C.
Pierre
,
J. Sound Vib.
126
,
485
(
1988
).
14.
M.
Spletzer
,
A.
Raman
,
A. Q.
Wu
,
X.
Xu
, and
R.
Reifenberger
,
Appl. Phys. Lett.
88
,
254102
(
2006
).
15.
P.
Thiruvenkatanathan
,
J.
Yan
,
J.
Woodhouse
, and
A. A.
Seshia
,
J. Microelectromech. Syst.
18
,
1077
(
2009
).
16.
H.
Zhang
,
B.
Li
,
W.
Yuan
,
M.
Kraft
, and
H.
Chang
, “
An acceleration sensing method based on the mode localization of weakly coupled resonators
,”
J. Microelectromech. Syst.
25
,
286
296
(
2016
).
17.
M.
Pandit
,
C.
Zhao
,
G.
Sobreviela
,
S.
Du
,
X.
Zou
, and
A.
Seshia
, “
Utilizing energy localization in weakly coupled nonlinear resonators for sensing applications
,”
J. Microelectromech. Syst.
28
,
182
188
(
2019
).
18.
J.
Juillard
,
A.
Mostafa
, and
P. M.
Ferreira
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
66
,
1950
(
2019
).
19.
M.
Pandit
,
C.
Zhao
,
G.
Sobreviela
,
X.
Zou
, and
A. A.
Seshia
, “
High resolution differential mode-localized MEMS accelerometer
,”
J. Microelectromech. Syst.
28
,
782
789
(
2019
).
20.
H.
Zhang
,
H.
Chang
, and
W.
Yuan
, “
Characterization of forced localization of disordered weakly coupled micromechanical resonators
,”
Microsyst. Nanoeng.
3
,
17023
(
2017
).
21.
C.
Zhao
,
M.
Pandit
,
G.
Sobreviela
,
A.
Mustafazade
,
S.
Du
,
X.
Zou
, and
A.
Seshia
, “
On the noise optimization of resonant MEMS sensors utilizing vibration mode localization
,”
Appl. Phys. Lett.
112
,
194103
(
2018
).
22.
H.
Zhang
,
G.
Sobreviela
,
D.
Chen
,
M.
Pandit
,
J.
Sun
,
C.
Zhao
, and
A.
Seshia
, “
A high-performance mode-localized accelerometer employing a quasi-rigid coupler
,”
IEEE Electron Device Lett.
41
,
1560
(
2020
).
23.
B.
Peng
,
K.
Hu
,
L.
Shao
,
H.
Yan
,
L.
Li
,
X.
Wei
, and
W.
Zhang
, “
A sensitivity tunable accelerometer based on series-parallel electromechanically coupled resonators using mode localization
,”
J. Microelectromech. Syst.
29
,
3
(
2020
).
24.
H.
Yamaguchi
, “
GaAs-based micro/nanomechanical resonators
,”
Semicond. Sci. Technol.
32
,
103003
(
2017
).
25.
C.
Zhao
,
X.
Zhou
,
M.
Pandit
,
G.
Sobreviela
,
S.
Du
,
X.
Zou
, and
A. A.
Seshia
, “
Toward high-resolution inertial sensors employing parametric modulation in coupled micromechanical resonators
,”
Phys. Rev. Appl.
12
,
044005
(
2019
).
26.
X.
Zhou
,
C.
Zhao
,
D.
Xiao
,
J.
Sun
,
G.
Sobreviela
,
D. D.
Gerrard
,
Y.
Chen
,
I.
Flader
,
T. W.
Kenny
,
X.
Wu
, and
A. A.
Seshia
, “
Dynamic modulation of modal coupling in microelectromechanical gyroscopic ring resonators
,”
Nat. Commun.
10
,
4980
(
2019
).
27.
M.
Sansa
,
E.
Sage
,
E. C.
Bullard
,
M.
Gély
,
T.
Alava
,
E.
Colinet
,
A. K.
Naik
,
L. G.
Villanueva
,
L.
Duraffourg
,
M. L.
Roukes
, and
G.
Jourdan
, “
Frequency fluctuations in silicon nanoresonators
,”
Nat. Nanotechnol.
11
,
552
(
2016
).
28.
C.
Wang
,
F.
Chen
,
Y.
Wang
,
S.
Sadeghpour
,
C.
Wang
,
M.
Baijot
,
R.
Esteves
,
C.
Zhao
,
J.
Bai
,
H.
Liu
, and
M.
Kraft
, “
Micromachined accelerometers with sub-μg/√Hz noise floor: A review
,”
Sensors
20
,
4054
(
2020
).
29.
A.
Mustafazade
,
M.
Pandit
,
C.
Zhao
,
G.
Sobreviela
,
Z.
Du
,
P.
Steinmann
,
X.
Zou
,
R. T.
Howe
, and
A. A.
Seshia
, “
A vibrating beam MEMS accelerometer for gravity and seismic measurements
,”
Sci. Rep.
10
(
1
),
10415
(
2020
).

Supplementary Material

You do not currently have access to this content.