We theoretically and experimentally investigate the application of an open-circuit voltage photodetector (VocP) architecture for mid-wave infrared (MWIR, 3–5 μm) detection and imaging. In contrast to conventional reverse-bias (RB) operation of the diode, which generates a photocurrent that is proportional to the photon irradiance, we evaluate the potential of using unbiased diodes that generate an open-circuit voltage, VOC, under illumination. The predicted Noise Equivalent Differential Temperature (NEDT) of a VocP is inferior to conventional RB when we assume an infinite well capacity and fixed integration time, but the prediction reverses when the actual well capacity of a readout integrated circuit (ROIC) is taken into account. Therefore, for a focal plane array (FPA) with a ROIC, we predict superior NEDT for the VocP. To demonstrate this concept, we fabricated and tested a basic VocP unit-cell architecture by connecting the VOC anode of a MWIR photodiode to the gate of an n-type metal-oxide semiconductor transistor that is operated in sub-threshold. Very good agreement is obtained between the analytical model and the observed drain current of the transistor over three orders of photon irradiance (1015–1018 photons/sec-cm2). The decoupling of the diode photocurrent from the integration capacitor in the circuit leads to a lower dark current that allows for longer integration times and improved sensitivity. This potentially can have a great impact on the performance and functionality of FPAs, leading to FPAs with better NEDT at a higher operating temperature, wider dynamic range, and smaller pixel size leading to larger array formats.

1.
A.
Rogalski
,
P.
Martyniuk
, and
M.
Kopytko
,
Rep. Prog. Phys.
79
(
4
),
046501
(
2016
).
2.
G.
Gershon
,
E.
Avnon
,
M.
Brumer
,
W.
Freiman
,
Y.
Karni
,
T.
Niderman
,
O.
Ofer
,
T.
Rosenstock
,
D.
Seref
,
N.
Shiloah
,
L.
Shkedy
,
R.
Tessler
, and
I.
Shtrichman
,
Proc. SPIE
10177
,
101771I
(
2017
).
3.
J.
Jenkins
,
S.
Terterian
,
B.
Tu
,
W.
Strong
,
M.
Roebuck
,
T. J.
De Lyon
,
H.
Sharifi
,
R. D.
Rajavel
,
J.
Caulfield
, and
J. P.
Curzan
,
Proc. SPIE
10177
,
101771J
(
2017
).
4.
S.
Bisotto
,
J.
Abergel
,
B.
Dupont
,
A.
Ferron
,
O.
Mailliart
,
J.-A.
Nicolas
,
S.
Renet
,
F.
Rochette
, and
J.-L.
Santailler
,
Proc. SPIE
11002
,
110021C
(
2019
).
5.
M.
Eismann
, in presented at the
OSU Materials Week
,
Columbus, OH
(
2018
) (unpublished).
6.
D. Z.
Ting
,
A.
Soibel
,
A.
Khoshakhlagh
,
S. B.
Rafol
,
S. A.
Keo
,
L.
Höglund
,
A. M.
Fisher
,
E. M.
Luong
, and
S. D.
Gunapala
,
Appl. Phys. Lett.
113
(
2
),
021101
(
2018
).
7.
D.
Wu
,
J.
Li
,
A.
Dehzangi
, and
M.
Razeghi
,
AIP Adv.
10
(
2
),
025018
(
2020
).
8.
R.
Hasegawa
,
A.
Yoshikawa
,
T.
Morishita
,
Y.
Moriyasu
,
K.
Nagase
, and
N.
Kuze
,
J. Cryst. Growth
464
,
211
214
(
2017
).
9.
N.
Kuze
,
E. G.
Camargo
,
K.
Ueno
,
Y.
Kawakami
,
Y.
Moriyasu
,
K.
Nagase
,
M.
Sato
,
H.
Endo
,
K.
Ishibashi
, and
M.
Ozaki
,
Phys. Status Solidi C
3
(
3
),
431
434
(
2006
).
10.
T.
Specht
,
Z.
Taghipour
,
T. J.
Ronningen
,
R.
Fragasse
,
R.
Tantawy
,
S.
Smith
,
E.
Fuller
,
W.
Khalil
, and
S.
Krishna
, in
IEEE Research and Applications of Photonics in Defense Conference (RAPID)
(
2019
), pp.
1
4
.
11.
W.
Huang
,
L.
Lei
,
L.
Li
,
J. A.
Massengale
,
R. Q.
Yang
,
T. D.
Mishima
, and
M. B.
Santos
,
J. Appl. Phys.
124
(
2
),
023101
(
2018
).
12.
W.
Shockley
,
Bell Syst. Tech. J.
28
(
3
),
435
489
(
1949
).
13.
G.
Ariyawansa
,
J.
Duran
,
C.
Reyner
, and
J.
Scheihing
,
Micromachines
10
(
12
),
806
(
2019
).
14.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
2006
).
15.
M.
Buckingham
and
E.
Faulkner
,
Radio Electron. Eng.
44
(
3
),
125
140
(
1974
).
16.
J. D.
Vincent
,
J.
Vampola
,
S.
Hodges
,
G.
Pierce
, and
M.
Stegall
,
Fundamentals of Infrared and Visible Detector Operation and Testing
(
John Wiley & Sons
,
2015
).
17.
ASTM
, “
Standard Practice for Noise Equivalent Temperature Difference of Thermal Imaging Systems
” (
ASTM International
,
West Conshohocken
,
PA
,
2018
).
18.
J. M.
Lloyd
,
Thermal Imaging Systems
(
Springer Science & Business Media
,
2013
).
19.
W. E.
Tennant
,
D.
Lee
,
M.
Zandian
,
E.
Piquette
, and
M.
Carmody
,
J. Electron. Mater.
37
(
9
),
1406
1410
(
2008
).
20.
FLIR
, see https://www.flir.com/products/isc0403/ for information about ROIC pixel charge capacity (
2005
).
21.
L.
Forbes
and
J. R.
Yeargan
,
IEEE Trans. Electron Devices
21
(
8
),
459
462
(
1974
).
22.
T.
Specht
,
Z.
Taghipour
,
T. J.
Ronningen
,
R.
Fragasse
,
R.
Tantawy
,
S.
Smith
,
E.
Fuller
,
W.
Khalil
, and
S.
Krishna
,
Proc. SPIE
11002
,
1100225
(
2019
).
23.
R.
Fragasse
,
R.
Tantawy
,
S.
Smith
,
T.
Specht
,
Z.
Taghipour
,
P. V.
Hooser
,
C.
Taylor
,
T. J.
Ronningen
,
E.
Fuller
,
R.
Fink
,
S.
Krishna
, and
W.
Khalil
, in
IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS)
(
IEEE
,
2020
), pp.
1
4
.
24.
Z. B.
Tian
and
S.
Krishna
,
IEEE J. Quantum Electron.
51
(
4
),
1
5
(
2015
).
25.
M.
Song
,
K. P.
MacWilliams
, and
J. C. S.
Woo
,
IEEE Trans. Electron Devices
44
(
2
),
268
276
(
1997
).
You do not currently have access to this content.