Electrical properties of Al2O3/hydrogenated-diamond (H-diamond) metal-oxide-semiconductor (MOS) capacitors are investigated and discussed in this study. Al2O3 gate dielectrics are deposited at 120, 200, and 300 °C by an atomic layer deposition technique. For the H-diamond MOS capacitors with Al2O3 deposited at 120, 200, and 300 °C, leakage current densities at an electric field of 3.0 MV cm−1 are 8.4 × 10−4, 7.1 × 10−6, and 7.5 × 10−5 A cm−2, respectively. A small decrease in the maximum capacitance of the Al2O3 (120 °C)/H-diamond MOS capacitor is observed when the measurement frequency is increased from 1 kHz to 100 kHz. However, the maximum capacitances of the Al2O3 (200 °C)/H-diamond and Al2O3 (300 °C)/H-diamond MOS capacitors are stable. Experimental flatband voltage in the capacitance–voltage curve of the Al2O3 (120 °C)/H-diamond MOS capacitor shifts to the left with respect to theoretical flatband voltage. However, they shift to the right for the Al2O3 (200 °C)/H-diamond and Al2O3 (300 °C)/H-diamond MOS capacitors. Therefore, when the deposition temperature of Al2O3 is increased from 120 to 300 °C, polarity of the fixed charges in the H-diamond MOS capacitors changes from positive to negative. This phenomenon is explained by the variations of negatively charged acceptors at the Al2O3/H-diamond interface and oxygen vacancies in the Al2O3 film.

1.
T.
Ueda
,
Jpn. J. Appl. Phys., Part 1
58
,
SC0804
(
2019
).
2.
Z.
Tong
,
L.
Gu
,
Z.
Ye
,
K.
Surakitbovorn
, and
J. R.
Davila
,
IEEE Trans. Power Electron.
34
,
12181
(
2019
).
3.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
 IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
4.
H.
Umezawa
,
Mater. Sci. Semicond. Process.
78
,
147
(
2018
).
5.
M.
Geis
,
Mater. Res. Soc. Symp. Proc.
162
,
15
(
1989
).
6.
C. J. H.
Wort
and
R. S.
Balmer
,
Mater. Today
11
,
22
(
2008
).
7.
P. W.
May
,
Philos. Trans. R. Soc. London, Sect. A
358
,
473
(
2000
).
8.
T.
Matsumoto
,
H.
Kato
,
K.
Oyama
,
T.
Makino
,
M.
Ogura
,
D.
Takeuchi
,
T.
Inokuma
,
N.
Tokuda
, and
S.
Yamasaki
,
Sci. Rep.
6
,
31585
(
2016
).
9.
T.
Matsumoto
,
H.
Kato
,
T.
Makino
,
M.
Ogura
,
D.
Takeuchi
,
S.
Yamasaki
,
T.
Inokuma
, and
N.
Tokuda
,
Appl. Phys. Lett.
114
,
242101
(
2019
).
10.
T. T.
Pham
,
N.
Rouger
,
C.
Masante
,
G.
Chicot
,
F.
Udrea
,
D.
Eon
,
E.
Gheeraert
, and
J.
Pernot
,
Appl. Phys. Lett.
111
,
173503
(
2017
).
11.
T. T.
Pham
,
J.
Pernot
,
G.
Perez
,
D.
Eon
,
E.
Gheeraert
, and
N.
Rouger
,
IEEE Electron Device Lett.
38
,
1571
(
2017
).
12.
K.
Hirama
,
H.
Sato
,
Y.
Harada
,
H.
Yamamoto
, and
M.
Kasu
,
Jpn. J. Appl. Phys., Part 1
51
,
090114
(
2012
).
13.
X.
Yu
,
J.
Zhou
,
C.
Qi
,
Z.
Cao
,
Y.
Kong
, and
T.
Chen
,
IEEE Electron Device Lett.
39
,
1373
(
2018
).
14.
H.
Kawarada
,
H.
Tsuboi
,
T.
Naruo
,
T.
Yamada
,
D.
Xu
,
A.
Daicho
,
T.
Saito
, and
A.
Hiraiwa
,
Appl. Phys. Lett.
105
,
013510
(
2014
).
15.
H.
Kawarada
,
T.
Yamada
,
D.
Xu
,
Y.
Kitabayashi
,
M.
Shibata
,
D.
Matsumura
,
M.
Kobayashi
,
T.
Saito
,
T.
Kudo
,
M.
Inaba
, and
A.
Hiraiwa
, in
28th International Symposium of Power Semiconductor Devices and ICs
(
2016
), p.
483
.
16.
S.
Imanishi
,
K.
Horikawa
,
N.
Oi
,
S.
Okubo
,
T.
Kageura
,
A.
Hiraiwa
, and
H.
Kawarada
,
IEEE Electron Device Lett.
40
,
279
(
2019
).
17.
J. W.
Liu
,
M. Y.
Liao
,
M.
Imura
,
E.
Watanabe
,
H.
Oosato
, and
Y.
Koide
,
Appl. Phys. Lett.
105
,
082110
(
2014
).
18.
J.
Walker
,
Rep. Prog. Phys.
42
,
1605
(
1979
).
19.
C. I.
Pakes
,
J. A.
Garrido
, and
H.
Kawarada
,
MRS Bull.
39
,
542
(
2014
).
20.
H.
Sato
and
M.
Kasu
,
Diamond Relat. Mater.
31
,
47
(
2013
).
21.
H. C.
Lin
,
P. D.
Ye
, and
G. D.
Wilk
,
Appl. Phys. Lett.
87
,
182904
(
2005
).
22.
C.
Pietzka
,
J.
Scharpf
,
M.
Fikry
,
D.
Heinz
,
K.
Forghani
,
T.
Meisch
,
T.
Diemant
,
R. J.
Behm
,
J.
Bernhard
,
J.
Biskupek
,
U.
Kaiser
,
F.
Scholz
, and
E.
Kohn
,
J. Appl. Phys.
114
,
114503
(
2013
).
23.
F.
Maier
,
M.
Riedel
,
B.
Mantel
,
J.
Ristein
, and
L.
Ley
,
Phys. Rev. Lett.
85
,
3472
(
2000
).
24.
J. W.
Liu
,
M. Y.
Liao
,
M.
Imura
,
T.
Matsumoto
,
N.
Shibata
,
Y.
Ikuhara
, and
Y.
Koide
,
J. Appl. Phys.
118
,
115704
(
2015
).
25.
B. E.
Deal
,
IEEE Tran. Electron Devices
27
,
606
(
1980
).
26.
B. C.
Lai
,
N.
Kung
, and
J. Y.
Lee
,
J. Appl. Phys.
85
,
4087
(
1999
).
27.
E. H.
Nicollian
and
J. R.
Brews
,
MOS Physics and Technology
(
Wiley
,
New York
1982
).
28.
K.
Hayashi
,
S.
Yamanaka
,
H.
Watanabe
,
T.
Sekiguchi
,
H.
Okushi
, and
K.
Kajimura
,
J. Appl. Phys.
81
,
744
(
1997
).
29.
B.
Rezek
,
C.
Sauerer
,
C. E.
Nebel
,
M.
Stutzmann
,
J.
Ristein
,
L.
Ley
,
E.
Snidero
, and
P.
Bergonzo
,
Appl. Phys. Lett.
82
,
2266
(
2003
).
30.
T. V.
Perevalov
,
O. E.
Tereshenko
,
V. A.
Gritsenko
,
V. A.
Pustovarov
,
A. P.
Yelisseyev
,
C.
Park
,
J. H.
Han
, and
C.
Lee
,
J. Appl. Phys.
108
,
013501
(
2010
).
31.
M.
Uenuma
,
K.
Takahashi
,
S.
Sonehara
,
Y.
Tominaga
,
Y.
Fujimoto
,
Y.
Ishikawa
, and
Y.
Uraoka
,
AIP Adv.
8
,
105103
(
2018
).
32.
K.
Matsunaga
,
T.
Tanaka
,
T.
Yamamoto
, and
Y.
Ikuhara
,
Phys. Rev. B
68
,
085110
(
2003
).
33.
A.
Daicho
,
T.
Saito
,
S.
Kurihara
,
A.
Hiraiwa
, and
H.
Kawarada
,
J. Appl. Phys.
115
,
223711
(
2014
).
34.
A.
Hiraiwa
,
T.
Saito
,
D.
Matsumura
, and
H.
Kawarada
,
J. Appl. Phys.
117
,
215304
(
2015
).
35.
S. A. O.
Russell
,
L.
Cao
,
D.
Qi
,
A.
Tallaire
,
K. G.
Crawford
,
A. T. S.
Wee
, and
D. A. J.
Moran
,
Appl. Phys. Lett.
103
,
202112
(
2013
).
36.
J. W.
Liu
,
M. Y.
Liao
,
M.
Imura
, and
Y.
Koide
,
Appl. Phys. Lett.
101
,
252108
(
2012
).
37.
C. D.
Wagner
,
L. E.
Davis
,
M. V.
Zeller
,
J. A.
Taylor
,
R. H.
Raymond
, and
L. H.
Gale
,
Surf. Interface Anal.
3
,
211
(
1981
).
You do not currently have access to this content.