The restacking of stripped two-dimensional material into a van der Waals heterojunction provides a promising technology for high-performance optoelectronic devices. This paper presents a self-driven photodetector composed of p-GaSe/n-MoSe2. The hybrid contact is directly formed between the electrode and the heterojunction, which considerably improves the photovoltaic effect. In addition, the Schottky barrier between the semiconductor and metal electrodes creates a built-in electric field, which enhances the self-driven performance of the device. The as-fabricated photodetector has the high responsivity of 0.169 A W−1 at zero bias and the specific detectivity of 6.6 × 1011 Jones. When bias was applied, a responsivity of 6.81 A W−1 and a specific detectivity of 2.8 × 1013 Jones have also been obtained. This work demonstrates that selenide van der Waals heterojunctions based on two-dimensional materials have great potential for future electronic and optoelectronic applications.

1.
G.
Konstantatos
and
E. H.
Sargent
,
Nat. Nanotechnol.
5
(
6
),
391
(
2010
).
2.
M.
Engel
,
M.
Steiner
, and
P.
Avouris
,
Nano Lett.
14
(
11
),
6414
(
2014
).
3.
S.
Su
,
B.
Cheng
,
C.
Xue
,
W.
Wang
,
Q.
Cao
,
H.
Xue
,
W.
Hu
,
G.
Zhang
,
Y.
Zuo
, and
Q.
Wang
,
Opt. Express
19
(
7
),
6400
(
2011
).
4.
T.
Mueller
,
F.
Xia
, and
P.
Avouris
,
Nat. Photonics
4
(
5
),
297
(
2010
).
5.
Y.
Miyoshi
,
Y.
Fukazawa
,
Y.
Amasaka
,
R.
Reckmann
,
T.
Yokoi
,
K.
Ishida
,
K.
Kawahara
,
H.
Ago
, and
H.
Maki
,
Nat. Commun.
9
(
1
),
1279
(
2018
).
6.
D.
Jariwala
,
V. K.
Sangwan
,
L. J.
Lauhon
,
T. J.
Marks
, and
M. C.
Hersam
,
Chem. Soc. Rev.
42
(
7
),
2824
(
2013
).
7.
V.
Mulloni
,
L.
Lorenzelli
,
B.
Margesin
,
M.
Barbato
, and
G.
Meneghesso
,
Microelectron. Eng.
160
,
63
(
2016
).
8.
X.
Shen
,
D.
Wang
,
J.
Ning
,
B.
Wang
,
H.
Guo
,
C.
Zhang
,
Y.
Jia
,
J.
Dong
,
X.
Feng
, and
X.
Wang
,
Carbon
169
,
92
(
2020
).
9.
D.
Shi
,
M. E.
Sadat
,
A. W.
Dunn
, and
D. B.
Mast
,
Nanoscale
7
(
18
),
8209
(
2015
).
10.
M. P. M.
Dicker
,
J. M.
Rossiter
,
I. P.
Bond
, and
P. M.
Weaver
,
Bioinspiration Biomimetics
9
(
3
),
036015
(
2014
).
11.
A.
Yalcin
,
K. C.
Popat
,
J. C.
Aldridge
,
T. A.
Desai
,
J.
Hryniewicz
,
N.
Chbouki
,
B. E.
Little
,
O.
King
,
V.
Van
, and
S.
Chu
,
IEEE J. Sel. Top. Quantum Electron.
12
(
1
),
148
(
2006
).
12.
K.
Nishioka
,
T.
Takamoto
,
T.
Agui
,
M.
Kaneiwa
,
Y.
Uraoka
, and
T.
Fuyuki
,
Sol. Energy Mater. Sol. Cells
90
(
1
),
57
(
2006
).
13.
M.
Long
,
P.
Wang
,
H.
Fang
, and
W.
Hu
,
Adv. Funct. Mater.
29
(
19
),
1803807
(
2019
).
14.
W.
Tian
,
Y.
Wang
,
L.
Chen
, and
L.
Li
,
Small
13
(
45
),
1701848
(
2017
).
15.
J.
Ning
,
D.
Wang
,
Y.
Chai
,
X.
Feng
,
M.
Mu
,
L.
Guo
,
J.
Zhang
, and
Y.
Hao
,
Nanotechnology
28
(
28
),
284001
(
2017
).
16.
J.
Ning
,
Y.
Wang
,
X.
Feng
,
B.
Wang
,
J.
Dong
,
D.
Wang
,
C.
Yan
,
X.
Shen
,
X.
Wang
, and
J.
Zhang
,
Carbon
163
,
417
(
2020
).
17.
Y.
Liu
,
N. O.
Weiss
,
X.
Duan
,
H.-C.
Cheng
,
Y.
Huang
, and
X.
Duan
,
Nat. Rev. Mater.
1
(
9
),
16042
(
2016
).
18.
J.
Ning
,
D.
Wang
,
J.
Yan
,
D.
Han
,
Z.
Chai
,
W.
Cai
,
J.
Zhang
, and
Y.
Hao
,
Carbon
75
,
262
(
2014
).
19.
S.
Wu
,
Y.
Li
,
W.
Ding
,
L.
Xu
,
Y.
Ma
, and
L.
Zhang
,
Nano-Micro Lett.
12
(
1
),
1
26
(
2020
).
20.
J.
Wu
,
H.
Yuan
,
M.
Meng
,
C.
Chen
,
Y.
Sun
,
Z.
Chen
,
W.
Dang
,
C.
Tan
,
Y.
Liu
, and
J.
Yin
,
Nat. Nanotechnol.
12
(
6
),
530
(
2017
).
21.
J.
Ning
,
D.
Wang
,
C.
Zhang
,
Z.
Wang
,
S.
Tang
,
D.
Chen
,
Y.
Shi
,
J.
Zhang
, and
Y.
Hao
,
Synth. Met.
203
,
215
(
2015
).
22.
X.
Li
,
L.
Basile
,
B.
Huang
,
C.
Ma
,
J.
Lee
,
I. V.
Vlassiouk
,
A. A.
Puretzky
,
M.-W.
Lin
,
M.
Yoon
, and
M.
Chi
,
ACS Nano
9
(
8
),
8078
(
2015
).
23.
Q.
Lv
,
F.
Yan
,
X.
Wei
, and
K.
Wang
,
Adv. Opt. Mater.
6
(
2
),
1700490
(
2018
).
24.
F.
Yan
,
L.
Zhao
,
A.
Patanè
,
PAn
Hu
,
X.
Wei
,
W.
Luo
,
D.
Zhang
,
Q.
Lv
,
Q.
Feng
, and
C.
Shen
,
Nanotechnology
28
(
27
),
27LT01
(
2017
).
25.
C.-H.
Lee
,
G.-H.
Lee
,
A. M.
Van Der Zande
,
W.
Chen
,
Y.
Li
,
M.
Han
,
X.
Cui
,
G.
Arefe
,
C.
Nuckolls
, and
T. F.
Heinz
,
Nat. Nanotechnol.
9
(
9
),
676
(
2014
).
26.
X.
Wei
,
F.
Yan
,
Q.
Lv
,
C.
Shen
, and
K.
Wang
,
Nanoscale
9
(
24
),
8388
(
2017
).
27.
B.
Liu
,
C.
Zhao
,
X.
Chen
,
L.
Zhang
,
Y.
Li
,
H.
Yan
, and
Y.
Zhang
,
Superlattices Microstruct.
130
,
87
(
2019
).
28.
Z.
He
,
J.
Guo
,
S.
Li
,
Z.
Lei
,
L.
Lin
,
Y.
Ke
,
W.
Jie
,
T.
Gong
,
Y.
Lin
, and
T.
Cheng
,
Adv. Mater. Interfaces
7
,
1901848
(
2020
).
29.
P.
Tonndorf
,
R.
Schmidt
,
P.
Böttger
,
X.
Zhang
,
J.
Börner
,
A.
Liebig
,
M.
Albrecht
,
C.
Kloc
,
O.
Gordan
, and
D. R.
Zahn
,
Opt. Express
21
(
4
),
4908
(
2013
).
30.
PAn
Hu
,
Z.
Wen
,
L.
Wang
,
P.
Tan
, and
K.
Xiao
,
ACS Nano
6
(
7
),
5988
(
2012
).
31.
Y.
Cao
,
K.
Cai
,
P.
Hu
,
L.
Zhao
,
T.
Yan
,
W.
Luo
,
X.
Zhang
,
X.
Wu
,
K.
Wang
, and
H.
Zheng
,
Sci. Rep.
5
,
8130
(
2015
).
32.
S. L. M.
Liqin
,
Infrared
11
,
3
(
2005
).
33.
C.‐Y.
Wu
,
W.
Peng
,
T.
Fang
,
B.
Wang
,
C.
Xie
,
L.
Wang
,
W.‐H.
Yang
, and
L.‐B.
Luo
,
Adv. Electron. Mater.
5
(
5
),
1900135
(
2019
).
34.
H.-Y.
Chen
,
K.-W.
Liu
,
X.
Chen
,
Z.-Z.
Zhang
,
M.-M.
Fan
,
M.-M.
Jiang
,
X.-H.
Xie
,
H.-F.
Zhao
, and
D.-Z.
Shen
,
J. Mater. Chem. C
2
(
45
),
9689
(
2014
).
35.
C.
Zhou
,
S.
Raju
,
B.
Li
,
M.
Chan
,
Y.
Chai
, and
C. Y.
Yang
,
Adv. Funct. Mater.
28
(
45
),
1802954
(
2018
).
36.
M.
Massicotte
,
P.
Schmidt
,
F.
Vialla
,
K. G.
Schädler
,
A.
Reserbat-Plantey
,
K.
Watanabe
,
T.
Taniguchi
,
K.-J.
Tielrooij
, and
F. H.
Koppens
,
Nat. Nanotechnol.
11
(
1
),
42
(
2016
).
37.
Y.
Xue
,
Y.
Zhang
,
Y.
Liu
,
H.
Liu
,
J.
Song
,
J.
Sophia
,
J.
Liu
,
Z.
Xu
,
Q.
Xu
, and
Z.
Wang
,
ACS Nano
10
(
1
),
573
(
2016
).
38.
A.
Li
,
Q.
Chen
,
P.
Wang
,
Y.
Gan
,
T.
Qi
,
P.
Wang
,
F.
Tang
,
J. Z.
Wu
,
R.
Chen
,
L.
Zhang
, and
Y.
Gong
,
Adv. Mater.
31
(
6
),
1805656
(
2019
).
39.
A.
Islam
,
J.
Lee
, and
P. X.-L.
Feng
,
ACS Photonics
5
(
7
),
2693
(
2018
).
40.
N.
Zhou
,
R.
Wang
,
X.
Zhou
,
H.
Song
,
X.
Xiong
,
Y.
Ding
,
J.
,
L.
Gan
, and
T.
Zhai
,
Small
14
(
7
),
1702731
(
2018
).

Supplementary Material

You do not currently have access to this content.