Bilayer phosphorene homojunctions have attracted considerable interest owing to their natural bandgap and high carrier mobility. However, very little is known about the valuableness in arrays of bilayer phosphorene homojunctions with different rotated angles. In this work, we have presented angular modulated electronic and optical properties of rotated bilayer phosphorene employing first-principles calculations based on density functional theory. The angles in the homojunctions of the rotated bilayer phosphorene are set to be 26.02°,71.61°,110.54°,130.39°, and 149.01°, respectively, and the homojunctions demonstrate different bandgaps of 0.66 eV, 0.64 eV, 0.63 eV, 0.68 eV, and 0.67 eV, respectively, implying that these homojunctions are good candidates for application in optoelectronics and nanoelectronics. Interestingly, we found that the rotated bilayer phosphorene can greatly enhance the absorption of visible and infrared light, which would provide encouragement on the modeling of the rotated bilayer phosphorene in nanoelectronic and optoelectronic devices.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
669
(
2004
).
2.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
,
699
(
2012
).
3.
Y.
Li
,
Y. L.
Li
,
C. M.
Araujo
,
W.
Luo
, and
R.
Ahuja
,
Catal. Sci. Technol.
3
,
2214
(
2013
).
4.
A.
Kutana
,
E. S.
Penev
, and
B. I.
Yakobson
,
Nanoscale
6
,
5820
(
2014
).
5.
H.
Liu
,
A. T.
Neal
,
Z.
Zhu
,
Z.
Luo
,
X.
Xu
,
D.
Tomnek
, and
P. D.
Ye
,
ACS Nano
8
,
4033
(
2014
).
7.
S. Y.
Zhou
,
G.-H.
Gweon
,
A.
Fedorov
,
P.
First
,
W.
De Heer
,
D.-H.
Lee
,
F.
Guinea
,
A.
Neto
, and
A.
Lanzara
, “
Substrate-induced band gap opening in epitaxial graphene
,”
Nat. Mater.
6
,
770
775
(
2007
).
8.
M.
Sharma
,
A.
Kumar
,
P.
Ahluwalia
, and
R.
Pandey
, “
Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides
,”
J. Appl. Phys.
116
,
063711
(
2014
).
9.
H. V.
Phuc
,
V. V.
Ilyasov
,
N. N.
Hieu
, and
C. V.
Nguyen
,
Vacuum
149
,
231
237
(
2018
).
10.
X. F.
Chen
,
H. H.
Sheng
,
J. L.
Wang
,
G.
Tang
,
J. T.
Zhang
, and
D. M.
Bai
,
Vacuum
174
,
109232
(
2020
).
11.
Q. Q.
Yanga
,
J. X.
Deng
,
G. S.
Wang
,
Q. S.
Deng
,
J. L.
Zhao
,
Y. X.
Dai
,
P.
Duan
,
M.
Cui
,
L.
Kong
,
H. L.
Gao
,
R. J.
Nie
, and
F. R.
Wang
,
Vacuum
167
,
313
318
(
2019
).
12.
J. T.
Liu
,
M. M.
Xue
,
J. L.
Wang
,
H. H.
Sheng
,
G.
Tang
,
J. T.
Zhang
, and
D. M.
Bai
,
Vacuum
163
,
128
134
(
2019
).
13.
B. Q.
You
,
X. C.
Wang
,
Z. D.
Zheng
, and
W. B.
Mi
, “
Black phosphorene/monolayer transition-metal dichalcogenides two dimensional van der Waals heterostructures: A first-principles study
,”
Phys. Chem. Chem. Phys.
18
,
7381
7388
(
2016
).
14.
S.
Kaur
,
A.
Kumar
,
S.
Srivastava
, and
K.
Tankeshwar
, “
Electronic properties of phosphorene/graphene heterostructures: Effect of external electric field
,”
AIP Conf. Proc.
1731
,
050012
(
2016
).
15.
Y.
Cao
,
V.
Fatemi
,
A.
Demir
,
S.
Fang
,
S. L.
Tomarken
,
J. Y.
Luo
,
J. D.
Sanchez-Yamagishi
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
,
R. C.
Ashoori1
, and
P.
Jarillo-Herrero
,
Nature
556
,
80
(
2018
).
16.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
,
Nature
556
,
43
(
2018
).
17.
E. M.
Alexeev
,
D. A.
Ruiz-Tijerina
,
M.
Danovich
,
M. J.
Hamer
,
D. J.
Terry
,
P. K.
Nayak
,
S.
Ahn
,
S.
Pak
,
J.
Lee
,
J. I.
Sohn
,
M. R.
Molas
,
M.
Koperski
,
K.
Watanabe
,
T.
Taniguchi
,
K. S.
Novoselov
,
R. V.
Gorbachev
,
H. S.
Shin
,
V. I.
Fal'ko
, and
A. I.
Tartakovskii
,
Nature
567
,
81
86
(
2019
).
18.
K.
Tran
,
G.
Moody
,
F.
Wu
,
X.
Lu
,
J.
Choi
,
K.
Kim
,
A.
Rai
,
D.
Sanchez
,
A. J.
Quan
,
A.
Singh
,
J.
Embley
,
A.
Zepeda
,
M.
Campbell
,
T.
Autry
,
T.
Taniguchi
,
K.
Watanabe
,
N.
Lu
,
S. K.
Banerjee
,
K. L.
Silverman
,
S.
Kim
,
E.
Tutuc
,
L.
Yang
,
A. H.
MacDonald
, and
X. Q.
Li
,
Nature
567
,
71
75
(
2019
).
19.
K. L.
Seyler
,
P.
Rivera
,
H. Y.
Yu
,
N. P.
Wilson
,
E. L.
Ray
,
D. G.
Mandrus
,
J. Q.
Yan
,
W.
Yao
, and
X. D.
Xu
,
Nature
567
,
66
70
(
2019
).
20.
C. H.
Jin
,
E. C.
Regan
,
A.
Yan
,
M. I. B.
Utama
,
D. Q.
Wang
,
Y.
Qin
,
S. J.
Yang
,
Z. R.
Zheng
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Tongay
,
A.
Zettl
, and
F.
Wang
,
Nature
567
,
76
80
(
2019
).
21.
C.
Chowdhury
and
A.
Datta
, “
Exotic physics and chemistry of two-dimensional phosphorus: Phosphorene
,”
J. Phys. Chem. Lett.
8
,
2909
2916
(
2017
).
22.
J.
Dai
and
X. C.
Zeng
,
J. Phys. Chem. Lett.
5
,
1289
1293
(
2014
).
23.
L. K.
Li
,
Y. J.
Yu
,
G. J.
Ye
,
Q. Q.
Ge
,
X. D.
Ou
,
H.
Wu
,
D. L.
Feng
,
X. H.
Chen
, and
Y. B.
Zhang
,
Nat. Nanotechnol.
9
,
372
377
(
2014
).
24.
R. A.
Doganov
,
S. P.
Koenig
,
Y.
Yeo
,
K.
Watanabe
,
T.
Taniguchi
, and
B.
Öyilmaz
,
Appl. Phys. Lett.
106
,
083505
(
2015
).
25.
V. D.
Ganesan
,
J.
Linghu
,
C.
Zhang
,
Y. P.
Feng
, and
L.
Shen
,
Appl. Phys. Lett.
108
,
122105
(
2016
).
26.
Y.
Li
,
Z. M.
Wei
, and
J. B.
Li
,
Appl. Phys. Lett.
107
,
112103
(
2015
).
27.
Z. H.
Jin
,
J. T.
Mullen
, and
K. W.
Kim
,
Appl. Phys. Lett.
109
,
053108
(
2016
).
28.
J. J.
Pei
,
X.
Gai
,
J.
Yang
,
X. B.
Wang
,
Z. F.
Yu
,
D.-Y.
Choi
,
B. L.
Davies
, and
Y. R.
Lu
, “
Producing air-stable monolayers of phosphorene and their defect engineering
,”
Nat. Commun.
7
,
10450
(
2016
).
29.
P.
Kang
,
W. T.
Zhang
,
V. M.
Rioux
,
X. H.
Kong
,
C.
Hu
,
G. H.
Yu
, and
H.
Guo
,
Phys. Rev. B
96
,
195406
(
2017
).
30.
D. A.
Ospina
,
C. A.
Duque
,
J. D.
Correa
, and
E. S.
Morell
,
Superlattices Microstruct.
97
,
562
568
(
2016
).
31.
T.
Cao
,
Z. L.
Li
,
D. Y.
Qiu
, and
S. G.
Louie
,
Nano Lett.
16
,
5542
5546
(
2016
).
32.
G.
Kresse
and
J.
Furthmller
,
Phys. Rev. B
54
,
11169
(
1996
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
34.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
35.
G.
Makov
and
M. C.
Payne
,
Phys. Rev. B
51
,
4014
(
1995
).
36.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
37.
W. B.
Zhang
,
C.
Chen
, and
P. Y.
Tang
,
J. Chem. Phys.
141
,
044708
(
2014
).
38.
W. B.
Zhang
,
Q.
Qu
,
P.
Zhu
, and
C. H.
Lam
,
J. Mater. Chem. C
3
,
12457
(
2015
).
39.
Atomistix ToolKit version Q-2019.12-SP. 1, QuantumWise A/S
,” (www.quantumwise.com).
40.
M.
Brandbyge
,
J.-L.
Mozos
,
P.
Ordejn
,
J.
Taylor
, and
K.
Stokbro
, “
Density-functional method for nonequilibrium electron transport
,”
Phys. Rev. B
65
,
165401
(
2002
).
41.
X. H.
Peng
,
Q.
Wei
, and
A.
Copple
,
Phys. Rev. B
90
,
085402
(
2014
).
42.
W. Y.
Yu
,
Z. L.
Zhu
,
C. Y.
Niu
,
C.
Li
,
J. H.
Cho
, and
Y.
Jia
,
Phys. Chem. Chem. Phys.
17
,
16351
(
2015
).
43.
W. T.
Pong
and
C.
Durkan
,
J. Phys. D: Appl. Phys.
38
,
R329
(
2005
).
44.
G. A.
Zhu
,
J. H.
Wang
,
J. Z.
Xie
, and
C. M.
Li
, “
Layer-dependent band structure and optical properties of black phosphorene
,”
J. At. Mol. Phys.
35
,
86
96
(
2018
).
45.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
(
2003
).
46.
C. Y.
Ling
,
X. H.
Niu
,
Q.
Li
,
A. J.
Du
, and
J. L.
Wang
,
J. Am. Chem. Soc.
140
,
14161
14168
(
2018
).

Supplementary Material

You do not currently have access to this content.