The design of a nanocomposite system with a ferroelectric phase and a ferromagnetic phase is essential to achieve multiferroics due to the limited one-phase multiferroic material in nature. Ferromagnetic SrRuO3 (SRO) and ferroelectric BaTiO3 (BTO) have been selected to achieve the SRO-BTO nanocomposite thin film. The film exhibits excellent crystal quality owing to the perfect lattice matching of both phases with the SrTiO3 substrate, and very thin SRO nanopillars (∼5 nm) have been obtained. Because of the anisotropic nature of the SRO nanopillars, magnetic anisotropy has been obtained for the nanocomposite thin film, and the Curie temperature (Tc) can be determined to be 152 K. Furthermore, switchable piezoelectric behavior of the nanocomposite film with a maximum d33 value of ∼70 pm/V is obtained by the piezoelectric force microscopy measurement. Overall, the SRO-BTO nanocomposite system presents the desirable multiferroic response, which is promising for future magnetoelectric device integration.

2.
W.
Eerenstein
,
N. D.
Mathur
, and
J. F.
Scott
,
Nature
442
,
759
(
2006
).
3.
4.
T.
Nan
,
Y.
Hui
,
M.
Rinaldi
, and
N. X.
Sun
,
Sci. Rep.
3
,
1985
(
2013
).
5.
N. A.
Spaldin
and
M.
Fiebig
,
Science
309
,
391
392
(
2005
).
6.
Z.
Li
,
J.
Wang
,
Y.
Lin
, and
C. W.
Nan
,
Appl. Phys. Lett.
96
,
162505
(
2010
).
7.
J.
Wang
,
J. B.
Neaton
,
H.
Zheng
,
V.
Nagarajan
,
S. B.
Ogale
,
B.
Liu
,
D.
Viehland
,
V.
Vaithyanathan
,
D. G.
Schlom
,
U. V.
Waghmare
,
N. A.
Spaldin
,
K. M.
Rabe
,
M.
Wuttig
, and
R.
Ramesh
,
Science
299
,
1719
1722
(
2003
).
8.
T.
Zhao
,
A.
Scholl
,
F.
Zavaliche
,
K.
Lee
,
M.
Barry
,
A.
Doran
,
M. P.
Cruz
,
Y. H.
Chu
,
C.
Ederer
,
N. A.
Spaldin
,
R. R.
Das
,
D. M.
Kim
,
S. H.
Baek
,
C. B.
Eom
, and
R.
Ramesh
,
Nat. Mater.
5
,
823
829
(
2006
).
9.
R.
Seshadri
and
N. A.
Hill
,
Chem. Mater
13
,
2892
2899
(
2001
).
10.
N. A.
Hill
and
K. M.
Rabe
,
Phys. Rev. B
59
,
8759
8769
(
1999
).
11.
H.
Zheng
,
J.
Wang
,
S. E.
Lofland
,
Z.
Ma
,
L.
Mohaddes-Ardabili
,
T.
Zhao
,
L.
Salamanca-Riba
,
S. R.
Shinde
,
S. B.
Ogale
,
F.
Bai
,
D.
Viehland
,
Y.
Jia
,
D. G.
Schlom
,
M.
Wuttig
,
A.
Roytburd
, and
R.
Ramesh
,
Science
303
(
5658
),
661
663
(
2004
).
12.
H.
Wang
,
L.
Li
,
J.
Huang
,
X.
Gao
,
X.
Sun
,
D.
Zemlyanov
, and
H.
Wang
,
ACS Appl. Mater. Interfaces
11
,
26261
26267
(
2019
).
13.
R.
Comes
,
H.
Liu
,
M.
Khokhlov
,
R.
Kasica
,
J.
Lu
, and
S. A.
Wolf
,
Nano Lett.
12
,
2367
2373
(
2012
).
14.
X.
Gao
,
L.
Li
,
J.
Jian
,
H.
Wang
,
M.
Fan
,
J.
Huang
,
X.
Wang
, and
H.
Wang
,
ACS Appl. Nano Mater.
1
,
2509
2514
(
2018
).
15.
I.
Levina
,
J.
Slutsker
,
J.
Li
,
Z.
Tan
, and
A. L.
Roytburd
,
Appl. Phys. Lett.
91
,
062912
(
2007
).
16.
T. C.
Kim
,
S.
Ojha
,
G.
Tian
,
S. H.
Lee
,
H. K.
Jung
,
J. W.
Choi
,
L.
Kornblum
,
F. J.
Walker
,
C. H.
Ahn
,
C. A.
Ross
, and
D. H.
Kim
,
J. Mater. Chem. C
6
,
5552
(
2018
).
17.
S. H.
Lee
,
G.
Tian
,
T. C.
Kim
,
H. K.
Jung
,
J. W.
Choi
,
F. J.
Walker
,
C. H.
Ahn
,
C. A.
Ross
, and
D. H.
Kim
,
Nanotechnology
30
,
105601
(
2019
).
18.
J.
Huang
,
J. L.
MacManus-Driscoll
, and
H.
Wang
,
J. Mater Res.
32
(
21
),
4054
4066
(
2017
).
19.
A.
Chen
,
Z.
Bi
,
Q.
Jia
,
J. L.
MacManus-Driscoll
, and
H.
Wang
,
Acta Mater.
61
(
8
),
2783
2792
(
2013
).
20.
J. L.
MacManus-Driscoll
,
Adv Funct Mater.
20
(
13
),
2035
2045
(
2010
).
21.
O.
Lee
,
A.
Kursumovic
,
Z.
Bi
,
C.
Tsai
,
H.
Wang
, and
J. L.
MacManus-Driscoll
,
Adv. Mater. Interfaces
4
,
1700336
(
2017
).
22.
M.
Fan
,
W.
Zhang
,
J.
Jian
,
J.
Huang
, and
H.
Wang
,
APL Mater.
4
,
076105
(
2016
).
23.
X.
Sun
,
J.
Huang
,
J.
Jian
,
M.
Fan
,
H.
Wang
,
Q.
Li
,
J. L.
Mac Manus-Driscoll
,
P.
Lu
,
X.
Zhang
, and
H.
Wang
,
Mater. Horiz.
5
,
536
544
(
2018
).
24.
S.
Yang
,
S.
Lee
,
J.
Jian
,
W.
Zhang
,
P.
Lu
,
Q.
Jia
,
H.
Wang
,
T.
Noh
,
S. V.
Kalinin
, and
J. L.
MacManus-Driscoll
,
Nat. Commun.
6
,
8588
(
2015
).
25.
Y.
Hsieh
,
E.
Strelcov
,
J.
Liou
,
C.
Shen
,
Y.
Chen
,
S. V.
Kalinin
, and
Y.
Chu
,
ACS Nano
7
,
8627
8633
(
2013
).
26.
Z.
Zhao
,
V.
Buscaglia
,
M.
Viviani
,
M. T.
Buscaglia
,
L.
Mitoseriu
,
A.
Testino
,
M.
Nygren
,
M.
Johnsson
, and
P.
Nanni
,
Phys. Rev. B
70
,
024107
(
2004
).
27.
K. J.
Choi
,
M.
Biegalski
,
Y. L.
Li
,
A.
Sharan
,
J.
Schubert
,
R.
Uecker
,
P.
Reiche
,
Y. B.
Chen
,
X. Q.
Pan
,
V.
Gopalan
,
L.-Q.
Chen
,
D. G.
Schlom
, and
C. B.
Eom
,
Science
306
(
5698
),
1005
1009
(
2004
).
28.
G.
Cao
,
S.
McCall
,
M.
Shepard
,
J. E.
Crow
, and
R. P.
Guertin
,
Phys. Rev. B
56
,
321
(
1997
).
29.
C. U.
Jung
,
H.
Yamada
,
M.
Kawasaki
, and
Y.
Tokura
,
Appl. Phys. Lett.
84
,
2590
(
2004
).
30.
C. W.
Jones
,
P. D.
Battle
,
P.
Lightfoot
, and
W. T. A.
Harrison
,
Acta Crystallogr., Sect. C
45
,
365
(
1989
).
31.
J.
Huang
,
A.
Gellatly
,
A.
Kauffmann
,
X.
Sun
, and
H.
Wang
,
Cryst. Growth Des.
18
,
4388
4394
(
2018
).
32.
W. S.
Chang
,
H.
Liu
,
V.
Tra
,
J.
Chen
,
T.
Wei
,
W. Y.
Tzeng
,
Y.
Zhu
,
H.
Kuo
,
Y.
Hsieh
,
J.
Lin
,
Q.
Zhan
,
C.
Luo
,
J.
Lin
,
J.
He
,
C.
Wu
, and
Y.
Chu
,
ACS Nano
8
,
6242
6249
(
2014
).
33.
A.
Zhang
,
S.
Cheng
,
J.
Lin
, and
X.
Wu
,
J. Appl. Phys.
117
,
17B325
(
2015
).
34.
Y.
Yang
,
C.
Song
,
X.
Wang
,
F.
Zeng
, and
F.
Pan
,
Appl. Phys. Lett.
92
,
012907
(
2008
).
35.
Y. Q.
Chen
,
X. J.
Zheng
, and
X.
Feng
,
Nanotechnology
21
,
055708
(
2010
).

Supplementary Material

You do not currently have access to this content.