Nanofabrication techniques with atomic level precision are needed for advancement to smaller technology nodes in the semiconductor industry. Thermal atomic layer etching (ALE) is currently being developed to isotropically etch material for future applications. In this Letter, an alternative plasma-based ALE process for isotropic etching of Al2O3 is introduced involving SF6 plasma and trimethylaluminium [TMA, Al(CH3)3] pulses, providing higher etch rates and lower processing temperatures than conventional thermal ALE. This process illustrates that a fluorine-containing plasma can serve as a viable reactant for ALE and that plasmas—besides their conventional use in anisotropic ALE—can be employed for isotropic ALE. In situ spectroscopic ellipsometry measurements confirmed saturation of both SF6 plasma and TMA half-cycles, which results in an etch per cycle (EPC) of 3.1 ± 0.1 Å at 260 °C. The isotropic nature of the plasma ALE process was demonstrated by transmission electron microscopy analysis of Al2O3-coated 3D trench structures after performing ALE cycles. A mechanism of fluorination by F radicals and ligand exchange reactions involving TMA is proposed for this plasma ALE process based on observations from infrared spectroscopy, which are supported by reactant synergy analysis. This work establishes the benefits that a plasma can deliver for isotropic ALE.

1.
K. J.
Kanarik
,
S.
Tan
, and
R. A.
Gottscho
,
J. Phys. Chem. Lett.
9
(
16
),
4814
4821
(
2018
).
2.
H. H.
Radamson
,
X.
He
,
Q.
Zhang
,
J.
Liu
,
H.
Cui
,
J.
Xiang
,
Z.
Kong
,
W.
Xiong
,
J.
Li
,
J.
Gao
,
H.
Yang
,
S.
Gu
,
X.
Zhao
,
Y.
Du
,
J.
Yu
, and
G.
Wang
,
Micromachines
10
(
5
),
293
(
2019
).
3.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol., A
33
(
2
),
020802
(
2015
).
4.
R.
Clark
,
K.
Tapily
,
K.
Yu
,
T.
Hakamata
,
S.
Consiglio
,
D.
O'Meara
,
C.
Wajda
,
J.
Smith
, and
G.
Leusink
,
APL Mater.
6
(
5
),
058203
(
2018
).
5.
T.
Faraz
,
F.
Roozeboom
,
H. C. M.
Knoops
, and
W. M. M.
Kessels
,
ECS J. Solid State Sci. Technol.
4
(
6
),
N5023
N5032
(
2015
).
6.
C.
Fang
,
Y.
Cao
,
D.
Wu
, and
A.
Li
,
Prog. Nat. Sci.
28
(
6
),
667
675
(
2018
).
7.
C. T.
Carver
,
J. J.
Plombon
,
P. E.
Romero
,
S.
Suri
,
T. A.
Tronic
, and
R. B.
Turkot
,
ECS J. Solid State Sci. Technol.
4
(
6
),
N5005
N5009
(
2015
).
8.
R.
Micheloni
,
S.
Aritome
, and
L.
Crippa
,
Proc. IEEE
105
(
9
),
1634
1649
(
2017
).
9.
Y.
He
,
H.
Gao
,
C.
Wang
,
Y.
Zhao
,
X.
Lu
,
C.
Zhang
,
X.
Zheng
,
L.
Guo
,
X.
Ma
, and
Y.
Hao
,
Phys. Status Solidi A
216
(
16
),
1900115
(
2019
).
10.
J.
Hennessy
,
C. S.
Moore
,
K.
Balasubramanian
,
A. D.
Jewell
,
K.
France
, and
S.
Nikzad
,
J. Vac. Sci. Technol., A
35
(
4
),
041512
(
2017
).
11.
S. K.
Song
,
H.
Saare
, and
G. N.
Parsons
,
Chem. Mater.
31
(
13
),
4793
4804
(
2019
).
12.
A. J. M.
Mackus
,
M. J. M.
Merkx
, and
W. M. M.
Kessels
,
Chem. Mater.
31
(
1
),
2
12
(
2019
).
13.
M. F. J.
Vos
,
S. N.
Chopra
,
M. A.
Verheijen
,
J. G.
Ekerdt
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
Chem. Mater.
31
(
11
),
3878
3882
(
2019
).
14.
A. M.
Cano
,
A. E.
Marquardt
,
J. W.
DuMont
, and
S. M.
George
,
J. Phys. Chem. C
123
(
16
),
10346
10355
(
2019
).
15.
Y.
Lee
,
J. W.
DuMont
, and
S. M.
George
,
Chem. Mater.
28
(
9
),
2994
3003
(
2016
).
16.
Y.
Lee
,
C.
Huffman
, and
S. M.
George
,
Chem. Mater.
28
(
21
),
7657
7665
(
2016
).
17.
J. W.
DuMont
and
S. M.
George
,
J. Chem. Phys.
146
(
5
),
052819
(
2017
).
18.
D. R.
Zywotko
,
J.
Faguet
, and
S. M.
George
,
J. Vac. Sci. Technol., A
36
(
6
),
061508
(
2018
).
19.
J. W.
Clancey
,
A. S.
Cavanagh
,
J. E. T.
Smith
,
S.
Sharma
, and
S. M.
George
,
J. Phys. Chem. C
124
(
1
),
287
299
(
2020
).
20.
J. C.
Gertsch
,
A. M.
Cano
,
V. M.
Bright
, and
S. M.
George
,
Chem. Mater.
31
(
10
),
3624
3635
(
2019
).
21.
N. R.
Johnson
,
J. K.
Hite
,
M. A.
Mastro
,
C. E.
Eddy
, Jr.
, and
S. M.
George
,
Appl. Phys. Lett.
114
,
243103
(
2019
).
22.
E.
Mohimi
,
X. I.
Chu
,
B. B.
Trinh
,
S.
Babar
,
G. S.
Girolami
, and
J. R.
Abelson
,
ECS J. Solid State Sci. Technol.
7
(
9
),
P491
P495
(
2018
).
23.
M.
Konh
,
C.
He
,
X.
Lin
,
X.
Guo
,
V.
Pallem
,
R. L.
Opila
,
A. V.
Teplyakov
,
Z.
Wang
, and
B.
Yuan
,
J. Vac. Sci. Technol., A
37
,
021004
(
2019
).
24.
S. D.
Sherpa
,
P. L. G.
Ventzek
, and
A.
Ranjan
,
J. Vac. Sci. Technol., A
35
(
5
),
05C310
(
2017
).
25.
A.
Mameli
,
M. A.
Verheijen
,
A. J. M.
Mackus
,
W. M. M.
Kessels
, and
F.
Roozeboom
,
ACS Appl. Mater. Interfaces
10
,
38588
38595
(
2018
).
26.
J.
Li
,
Y.
Li
,
N.
Zhou
,
G.
Wang
,
Q.
Zhang
,
A.
Du
,
Y.
Zhang
,
J.
Gao
,
Z.
Kong
,
H.
Lin
,
J.
Xiang
,
C.
Li
,
X.
Yin
,
Y.
Li
,
X.
Wang
,
H.
Yang
,
X.
Ma
,
J.
Han
,
J.
Zhang
,
T.
Hu
,
T.
Yang
,
J.
Li
,
H.
Yin
,
H.
Zhu
,
W.
Wang
, and
H. H.
Radamson
,
Materials
13
(
3
),
771
(
2020
).
27.
S. J.
Oh
,
H. C.
Lee
, and
C. W.
Chung
,
Phys. Plasmas
24
(
1
),
013512
(
2017
).
28.
C.
Cardinaud
,
C. R. Chim.
21
(
21
),
723
(
2018
).
29.
S. J.
Ullal
,
H.
Singh
,
J.
Daugherty
,
V.
Vahedi
, and
E. S.
Aydil
,
J. Vac. Sci. Technol., A
20
,
1195
1201
(
2002
).
30.
M. F. J.
Vos
,
H. C. M.
Knoops
,
R. A.
Synowicki
,
W. M. M.
Kessels
, and
A. J. M.
Mackus
,
Appl. Phys. Lett.
111
(
11
),
113105
(
2017
).
31.
I. E.
Clemente
and
A. V.
Miakonkikh
,
Proc. SPIE
10224
,
1022425
(
2016
).
32.
H. C. M.
Knoops
,
E. M. J.
Braeken
,
K.
de Peuter
,
S. E.
Potts
,
S.
Haukka
,
V.
Pore
, and
W. M. M.
Kessels
,
ACS Appl. Mater. Interfaces
7
,
19857
19862
(
2015
).
33.
B. E.
Deal
and
A. S.
Grove
,
J. Appl. Phys.
36
(
12
),
3770
3778
(
1965
).
34.
R. A.
Ovanesyan
,
N.
Leick
,
K. M.
Kelchner
,
D. M.
Hausmann
, and
S.
Agarwal
,
Chem. Mater.
29
(
15
),
6269
6278
(
2017
).
35.
T.
Faraz
,
M.
van Drunen
,
H. C. M.
Knoops
,
A.
Mallikarjunan
,
I.
Buchanan
,
D. M.
Hausmann
,
J.
Henri
, and
W. M. M.
Kessels
,
ACS Appl. Mater. Interfaces
9
(
2
),
1858
1869
(
2017
).
36.
See https://www.atomiclimits.com/aledatabase/ for further information on the ALE processes shown in Table I.
37.
N.
Chittock
, “Isotropic plasma atomic layer etching of Al2O3,” 4TU.ResearchData, https://data.4tu.nl/

Supplementary Material

You do not currently have access to this content.