Vortex-induced vibration (VIV) has been widely studied in the fields of vibration control, building construction, and underwater vehicles. Recently, researchers began utilizing the VIV phenomenon for flow energy harvesting. Here, we describe that vortex shedding causes periodic rotational motions and explore these vortex-induced swing (VIS) motions for harvesting flow energy and measuring flow speed. An arc-bluff structure was constructed to enlarge the VIS motions, and a phenomenological model was developed using the Van der Pol equation. Swing characteristics when flow velocities were in the range of (0.15, 0.45) m/s were assessed. Experiments showed that the maximum swing amplitude of the device is 120°, and it converges to 80° as the water velocity increases. The frequency, amplitude, and initial angle curve of the VIS device can be used to represent the water speed vector. The proposed flowmeter showed a flow rate sensitivity of 7∼10 Hz/(m·s−1) in the experimental range. Energy harvester prototypes demonstrated a peak-peak output of 3.28 V in water with a velocity of 0.45 m/s. The present work provides an approach for the flow measurement and energy harvesting under low-speed and low-frequency conditions.

1.
See https://www.noaa.gov/oceans-coasts for “
National Oceanic and Atmospheric Administration
” (last accessed 25 January
2019
).
2.
J.
Cihlar
,
W.
Grabs
, and
J.
Landwehr
, in
GCOS/GTOS/HWRP Expert Meeting
(
2000
).
3.
See http://www.mwr.gov.cn/ztpd/2011ztbd/zxhlswxtjs/ for “
Documents of the General Office of the Ministry of Water Resources.
4.
P. J.
Webster
and
R.
Lukas
,
Bull. Am. Meteorol. Soc.
73
(
9
),
1377
(
1992
).
5.
See https://gwec.net/global-figures/market-forecast-2012-2016/ for “
MARKET FORECASTS: Market Forecast for 2018-2022-840GW by 2022
” (
2019
).
6.
B.
Snyder
and
M. J.
Kaiser
,
Renewable Energy
34
(
6
),
1567
(
2009
).
7.
M. D.
Esteban
,
J. J.
Diez
,
J. S.
López
, and
V.
Negro
,
Renewable Energy
36
(
2
),
444
(
2011
).
8.
X.
Li
,
J.
Tao
,
X.
Wang
,
J.
Zhu
,
C.
Pan
, and
Z. L.
Wang
,
Adv. Energy Mater.
8
(
21
),
1800705
(
2018
).
9.
X.
Liang
,
T.
Jiang
,
G.
Liu
,
T.
Xiao
,
L.
Xu
,
W.
Li
,
F.
Xi
,
C.
Zhang
, and
Z. L.
Wang
,
Adv. Funct. Mater.
29
,
1807241
(
2019
).
10.
D. T.
Akcabay
and
Y. L.
Young
,
Phys. Fluids
24
(
5
),
054106
(
2012
).
11.
X.
Shan
,
J.
Deng
,
R.
Song
, and
T.
Xie
,
Appl. Sci.
7
(
2
),
116
(
2017
).
12.
X.
Shan
,
R.
Song
,
M.
Fan
, and
T.
Xie
,
Appl. Sci.
6
(
8
),
230
(
2016
).
13.
X.
Venugopal
,
A.
Agrawal
, and
S. V.
Prabhu
, “
Vortex shedding characteristics of a cylinder with a parallel slit placed in a circular pipe
,”
J. Visualization
20
(
2
),
263
275
(
2017
).
14.
S.
Chiba
,
M.
Waki
,
T.
Wada
,
Y.
Hirakawa
,
K.
Masuda
, and
T.
Ikoma
,
Appl. Energy
104
,
497
(
2013
).
15.
T.
Von Karman
, “
Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erführt
” (“About the mechanism of resistance that a moving body experiences in a liquid”),
Nachr. Ges. Wiss. Göettingen, Math.-Phys. Kl.
1911
,
509
517
(
1911
).
16.
T.
Von Kármán
,
Aerodynamics: Selected Topics in the Light of Their Historical Development
(
Courier Corporation
,
1954
).
17.
R.
Wille
,
Advances in Applied Mechanics
(
Elsevier
,
1960
), Vol.
6
, p.
273
.
18.
D.-A.
Wang
,
C.-Y.
Chiu
, and
H.-T.
Pham
,
Mechatronics
22
(
6
),
746
(
2012
).
19.
F. J.
Huera-Huarte
and
M.
Gharib
,
J. Fluids Struct.
27
(
5
),
824
(
2011
).
20.
D.
Li
,
Y.
Wu
,
A.
Da Ronch
, and
J.
Xiang
,
Prog. Aerosp. Sci.
86
,
28
(
2016
).
21.
A.
Barrero-Gil
,
S.
Pindado
, and
S.
Avila
,
Appl. Math. Modell.
36
(
7
),
3153
(
2012
).
22.
H. L.
Dai
,
A.
Abdelkefi
,
Y.
Yang
, and
L.
Wang
,
Appl. Phys. Lett.
108
(
5
),
053902
(
2016
).
23.
R.
Naseer
,
H. L.
Dai
,
A.
Abdelkefi
, and
L.
Wang
,
Appl. Energy
203
,
142
(
2017
).
24.
B. H.
Huynh
,
T.
Tjahjowidodo
,
Z.-W.
Zhong
,
Y.
Wang
, and
N.
Srikanth
,
Mech. Syst. Signal Process.
98
,
1097
(
2018
).
25.
M.
Zhang
,
G.
Hu
, and
J.
Wang
,
Int. J. Energy Res.
44
,
3762
(
2020
).
26.
C. H. K.
Williamson
,
Annu. Rev. Fluid Mech.
28
(
1
),
477
(
1996
).
27.
P. W.
Bearman
,
J. Fluids Struct.
27
(
5
),
648
(
2011
).
28.
L.
Kristensen
,
J. Atmos. Oceanic Technol.
15
(
1
),
5
(
1998
).
29.
L.
Kristensen
,
The Cup Anemometer and Other Exciting Instruments
(
Risø National Laboratory
,
Roskilde, Denmark
,
1993
).
30.
J.
Patterson
,
The Cup Anemometer
(
Royal Society of Canada
,
1926
).
31.
J. C.
Wyngaard
,
Annu. Rev. Fluid Mech.
13
(
1
),
399
(
1981
).
32.
J.
Wyngaard
,
J.
Bauman
, and
R.
Lynch
, “
In: Flow: Its measurement and control in science and industry
,”
Cup Anemometer Dynamics
(
Instrument Society of America
,
Pittsburgh, PA
,
1974
), Vol. 1, p.
701
708
.
33.
J.
Noel
,
R.
Yadav
,
G.
Li
, and
M. F.
Daqaq
, “
Improving the performance of galloping micro-power generators by passively manipulating the trailing edge
,”
Appl. Phys. Lett.
112
(
8
),
083503
(
2018
).
34.
N.
Srinil
and
H.
Zanganeh
, “
Modelling of coupled cross-flow/in-line vortex-induced vibrations using double Duffing and van der Pol oscillators
,”
Ocean Eng.
53
,
83
97
(
2012
).

Supplementary Material

You do not currently have access to this content.