The study of double modulation continuous wave (CW) electron spin resonance (DM-EPR) is reported to detect narrow “spin-packet”-like lines within an inhomogeneous CW-EPR line of low concentration P1 (Ns0) centers ([Ns0] < 1 ppm) in diamond. These narrow lines appear as peaks at multiples of modulation frequency in the double modulation spectrum. It is shown that the respective line shape can be fitted assuming two Lorentzian line shapes. The linewidth of the narrower Lorentzian is comparable with the linewidth of the Lorentzian obtained from the T2 relaxation time δ1=1/πT2 estimated from the Hahn echo pulsed-EPR experiment. The broader component δ2 correlates with the T2* relaxation time obtained from the free induction decay measurement of the inhomogeneous spectral line shape of the P1 center. The ratio δ2/δ118 derived from DM-EPR measurements approaches within the experimental error the value T2/T2*16 derived from pulsed-EPR. Sensitivity to the small shift of the magnetic field (0.6μT) was shown to be detectable from the broadening behavior of the δ2 component. The results promote DM-EPR as a method complementary to pulsed-EPR for studying coherence times of low density paramagnetic centers in a diamond lattice like nitrogen-vacancy (NV) center, since it exhibits similar properties to the here investigated P1 center in terms of long relaxation time at a monitored low concentration.

1.
V. V.
Dobrovitski
,
A. E.
Feiguin
,
D. D.
Awschalom
, and
R.
Hanson
,
Phys. Rev. B
77
(
24
),
245212
(
2008
).
2.
J. H. N.
Loubser
and
J. A. V.
Wyk
,
Rep. Prog. Phys.
41
(
8
),
1201
1248
(
1978
).
3.
J. F.
Barry
,
J. M.
Schloss
,
E.
Bauch
,
M. J.
Turner
,
C. A.
Hart
,
L. M.
Pham
, and
R. L.
Walsworth
,
Rev. Mod. Phys.
92
(
1
),
015004
(
2020
).
4.
M. W.
Doherty
,
N. B.
Manson
,
P.
Delaney
,
F.
Jelezko
,
J.
Wrachtrup
, and
L. C. L.
Hollenberg
,
Phys. Rep.
528
(
1
),
1
45
(
2013
).
5.
R.
Schirhagl
,
K.
Chang
, and
M.
Degen
,
Annu. Rev. Phys. Chem.
65
,
83
105
(
2014
).
6.
P.
Neumann
,
R.
Kolesov
,
B.
Naydenov
,
J.
Beck
,
F.
Rempp
,
M.
Steiner
,
V.
Jacques
,
G.
Balasubramanian
,
M. L.
Markham
,
D. J.
Twitchen
,
S.
Pezzagna
,
J.
Meijer
,
J.
Twamley
,
F.
Jelezko
, and
J.
Wrachtrup
,
Nat. Phys.
6
(
4
),
249
253
(
2010
).
7.
J.
Wrachtrup
,
S. Y.
Kilin
, and
A. P.
Nizovtsev
,
Opt Spectrosc.
91
(
3
),
429
437
(
2001
).
8.
C.
Grezes
,
Y.
Kubo
,
B.
Julsgaard
,
T.
Umeda
,
J.
Isoya
,
H.
Sumiya
,
H.
Abe
,
S.
Onoda
,
T.
Ohshima
,
K.
Nakamura
,
I.
Diniz
,
A.
Auffeves
,
V.
Jacques
,
J.-F.
Roch
,
D.
Vion
,
D.
Esteve
,
K.
Moelmer
, and
P.
Bertet
,
C. R. Phys.
17
(
7
),
693
704
(
2016
).
9.
E. C.
Reynhardt
,
G. L.
High
, and
J. A.
van Wyk
,
J. Chem. Phys.
109
(
19
),
8471
8477
(
1998
).
10.
J. A. V.
Wyk
,
E. C.
Reynhardt
,
G. L.
High
, and
I.
Kiflawi
,
J. Phys. D: Appl. Phys.
30
(
12
),
1790
1793
(
1997
).
11.
G.
Balasubramanian
,
P.
Neumann
,
D.
Twitchen
,
M.
Markham
,
R.
Kolesov
,
N.
Mizuochi
,
J.
Isoya
,
J.
Achard
,
J.
Beck
,
J.
Tissler
,
V.
Jacques
,
P. R.
Hemmer
,
F.
Jelezko
, and
J.
Wrachtrup
,
Nat. Mater.
8
(
5
),
383
387
(
2009
).
12.
A.
Gruber
,
A.
Dräbenstedt
,
C.
Tietz
,
L.
Fleury
,
J.
Wrachtrup
, and
C. V.
Borczyskowski
,
Science
276
(
5321
),
2012
(
1997
).
13.
V.
Stepanov
and
S.
Takahashi
,
Phys. Rev. B
94
(
2
),
024421
(
2016
).
14.
B.
Fortman
and
S.
Takahashi
,
J. Phys. Chem. A
123
(
29
),
6350
6355
(
2019
).
15.
B.
Rakvin
,
T.
Islam
, and
I.
Miyagawa
,
Phys. Rev. Lett.
50
(
17
),
1313
1315
(
1983
).
16.
B.
Rakvin
,
Chem. Phys. Lett.
109
(
3
),
280
284
(
1984
).
17.
M.
Peric
,
B.
Rakvin
, and
A.
Dulcic
,
J. Chem. Phys.
82
(
3
),
1079
1084
(
1985
).
18.
M.
Peric
,
B.
Rakvin
, and
A.
Dulcic
,
Chem. Phys. Lett.
126
(
6
),
574
578
(
1986
).
19.
S.
Valic
,
B.
Rakvin
,
Z.
Veksli
, and
Z.
Grubisicgallot
,
Macromolecules
23
(
25
),
5182
5186
(
1990
).
20.
B.
Rakvin
,
J. Magn. Reson., Ser. A
106
(
2
),
245
247
(
1994
).
21.
B.
Rakvin
,
Appl. Radiat. Isotopes
47
(
11–12
),
1251
1255
(
1996
).
22.
B.
Rakvin
,
D.
Carić
, and
M.
Kveder
,
J. Magn. Reson.
307
,
106587
(
2019
).
23.
M.
Fedin
,
I.
Gromov
, and
A.
Schweiger
,
J. Magn. Reson.
171
(
1
),
80
89
(
2004
).
24.
A. P.
Saiko
,
R.
Fedaruk
, and
S. A.
Markevich
,
J. Magn. Reson.
259
,
47
55
(
2015
).
25.
A.
Cox
,
M. E.
Newton
, and
J. M.
Baker
,
J. Phys.: Condens. Matter
6
(
2
),
551
563
(
1994
).
26.
S.
Zhang
,
S. C.
Ke
,
M. E.
Zvanut
,
H. T.
Tohver
, and
Y. K.
Vohra
,
Phys. Rev. B
49
(
21
),
15392
15395
(
1994
).
27.
J. A.
Weil
,
J. R.
Bolton
, and
J. E.
Wertz
,
Electron Paramagnetic Resonance: Elementary Theory and Practical Applications
(
Wiley
,
New York
,
1994
).
28.
J. R.
Harbridge
,
G. A.
Rinard
,
R. W.
Quine
,
S. S.
Eaton
, and
G. R.
Eaton
,
J. Magn. Reson.
156
(
1
),
41
51
(
2002
).
29.
A.
Abragam
and
B.
Bleaney
,
Electron Paramagnetic Resonance of Transition Ions
(
Clarendon Press
,
Oxford
,
1970
).
30.
E.
Bauch
,
S.
Singh
,
J.
Lee
,
C. A.
Hart
,
J. M.
Schloss
,
M. J.
Turner
,
J. F.
Barry
,
L.
Pham
,
N.
Bar-Gill
,
S. F.
Yelin
, and
R. L.
Walsworth
, arXiv:904.08763 (
2019
).
You do not currently have access to this content.