Solid-state qubits integrated on semiconductor substrates currently require at least one wire from every qubit to the control electronics, leading to a so-called wiring bottleneck for scaling. Demultiplexing via on-chip circuitry offers an effective strategy to overcome this bottleneck. In the case of gate-defined quantum dot arrays, specific static voltages need to be applied to many gates simultaneously to realize electron confinement. When a charge-locking structure is placed between the quantum device and the demultiplexer, the voltage can be maintained locally. In this study, we implement a switched-capacitor circuit for charge-locking and use it to float the plunger gate of a single quantum dot. Parallel plate capacitors, transistors, and quantum dot devices are monolithically fabricated on a Si/SiGe-based substrate to avoid complex off-chip routing. We experimentally study the effects of the capacitor and transistor size on the voltage accuracy of the floating node. Furthermore, we demonstrate that the electrochemical potential of the quantum dot can follow a 100 Hz pulse signal while the dot is partially floating, which is essential for applying this strategy in qubit experiments.

1.
B. M.
Maune
,
M. G.
Borselli
,
B.
Huang
,
T. D.
Ladd
,
P. W.
Deelman
,
K. S.
Holabird
,
A. A.
Kiselev
,
I.
Alvarado-Rodriguez
,
R. S.
Ross
,
A. E.
Schmitz
,
M.
Sokolich
,
C. A.
Watson
,
M. F.
Gyure
, and
A. T.
Hunter
, “
Coherent singlet-triplet oscillations in a silicon-based double quantum dot
,”
Nature
481
,
344
347
(
2012
).
2.
E.
Kawakami
,
P.
Scarlino
,
D. R.
Ward
,
F. R.
Braakman
,
D. E.
Savage
,
M. G.
Lagally
,
M.
Friesen
,
S. N.
Coppersmith
,
M. A.
Eriksson
, and
L. M. K.
Vandersypen
, “
Electrical control of a long-lived spin qubit in A Si/SiGe quantum dot
,”
Nat. Nanotechnol.
9
,
666
670
(
2014
).
3.
D. M.
Zajac
,
A. J.
Sigillito
,
M.
Russ
,
F.
Borjans
,
J. M.
Taylor
,
G.
Burkard
, and
J. R.
Petta
, “
Resonantly driven CNOT gate for electron spins
,”
Science
359
,
439
442
(
2018
).
4.
T. F.
Watson
,
S. G. J.
Philips
,
E.
Kawakami
,
D. R.
Ward
,
P.
Scarlino
,
M.
Veldhorst
,
D. E.
Savage
,
M. G.
Lagally
,
M.
Friesen
,
S. N.
Coppersmith
,
M. A.
Eriksson
, and
L. M. K.
Vandersypen
, “
A programmable two-qubit quantum processor in silicon
,”
Nature
555
,
633
637
(
2018
).
5.
J.
Yoneda
,
K.
Takeda
,
T.
Otsuka
,
T.
Nakajima
,
M. R.
Delbecq
,
G.
Allison
,
T.
Honda
,
T.
Kodera
,
S.
Oda
,
Y.
Hoshi
,
N.
Usami
,
K. M.
Itoh
, and
S.
Tarucha
, “
A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%
,”
Nat. Nanotechnol.
13
,
102
106
(
2018
).
6.
X.
Xue
,
T. F.
Watson
,
J.
Helsen
,
D. R.
Ward
,
D. E.
Savage
,
M. G.
Lagally
,
S.
Coppersmith
,
M. A.
Eriksson
,
S.
Wehner
, and
L. M. K.
Vandersypen
, “
Benchmarking gate fidelities in a Si/SiGe two-qubit device
,”
Phys. Rev. X
9
,
201011
(
2019
).
7.
R.
Pillarisetty
,
N.
Thomas
,
H. C.
George
,
K.
Singh
,
J.
Roberts
,
L.
Lampert
,
P.
Amin
,
T. F.
Watson
,
G.
Zheng
,
J.
Torres
,
M.
Metz
,
R.
Kotlyar
,
P.
Keys
,
J. M.
Boter
,
J. P.
Dehollain
,
G.
Droulers
,
G.
Eenink
,
R.
Li
,
L.
Massa
,
D.
Sabbagh
,
N.
Samkharadze
,
C.
Volk
,
B. P.
Wuetz
,
A.-M.
Zwerver
,
M.
Veldhorst
,
G.
Scappucci
,
L. M. K.
Vandersypen
, and
J. S.
Clarke
, “
Qubit device integration using advanced semiconductor manufacturing process technology
,” in
IEEE International Electron Devices Meeting (IEDM)
(
2018
).
8.
M.
Eriksson
,
S.
Coppersmith
, and
M.
Lagally
, “
Semiconductor quantum dot qubits
,”
MRS Bull.
38
,
794
801
(
2013
).
9.
D.
Loss
and
D. P.
DiVincenzo
, “
Quantum computation with quantum dots
,”
Phys. Rev. A
57
,
120
126
(
1998
).
10.
J. M.
Elzerman
,
R.
Hanson
,
L. H.
Willems van Beveren
,
L. M. K.
Vandersypen
, and
L. P.
Kouwenhoven
, “
Semiconductor few-electron quantum dots as spin qubits
,” in
Quantum Computing in Solid State Systems
, edited by
B.
Ruggiero
,
P.
Delsing
,
C.
Granata
,
Y.
Pashkin
, and
P.
Silvestrini
(
Springer
,
New York
,
2006
), pp.
298
305
.
11.
A. G.
Fowler
,
M.
Mariantoni
,
J. M.
Martinis
, and
A. N.
Cleland
, “
Surface codes: Towards practical large-scale quantum computation
,”
Phys. Rev. A
86
,
032324
(
2012
).
12.
D. P.
Franke
,
J. S.
Clarke
,
L. M. K.
Vandersypen
, and
M.
Veldhorst
, “
Rent's rule and extensibility in quantum computing
,”
Microprocessors Microsystems
67
,
1
7
(
2019
).
13.
B.
Keeth
,
R. J.
Baker
,
B.
Johnson
, and
F.
Lin
,
DRAM Circuit Design. Fundamental and High-Speed Topics
(
Wiley-IEEE Press
,
2007
).
14.
C.
Hill
,
E.
Peretz
,
S.
Hile
,
M.
House
,
M.
Fuechsle
,
S.
Rogge
,
M.
Simmons
, and
L.
Hollenberg
, “
A surface code quantum computer in silicon
,”
Sci. Adv.
1
,
e1500707
(
2015
).
15.
L. M. K.
Vandersypen
,
H.
Bluhm
,
J. S.
Clarke
,
A. S.
Dzurak
,
R.
Ishihara
,
A.
Morello
,
D. J.
Reilly
,
L. R.
Schreiber
, and
M.
Veldhorst
, “
Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent
,”
npj Quantum Inf.
3
,
34
(
2017
).
16.
M.
Veldhorst
,
H.
Eenink
,
C.
Yang
, and
A.
Dzurak
, “
Silicon cmos architecture for a spin-based quantum computer
,”
Nat. Commun.
8
,
1766
(
2017
).
17.
R.
Li
,
L.
Petit
,
D. P.
Franke
,
J. P.
Dehollain
,
J.
Helsen
,
M.
Steudtner
,
N. K.
Thomas
,
Z. R.
Yoscovits
,
K. J.
Singh
,
S.
Wehner
,
L. M. K.
Vandersypen
,
J. S.
Clarke
, and
M.
Veldhorst
, “
A crossbar network for silicon quantum dot qubits
,”
Sci. Adv.
4
,
eaar3960
(
2018
).
18.
J. M.
Boter
,
J. P.
Dehollain
,
G.
van Dijk
,
T.
Hensgens
,
R.
Versluis
,
J. S.
Clarke
,
M.
Veldhorst
,
F.
Sebastiano
, and
L. M. K.
Vandersypen
, “
A sparse spin qubit array with integrated control electronics
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
New York
,
2019
), pp.
31.4.1
31.4.4
.
19.
R. K.
Puddy
,
L. W.
Smith
,
H.
Al-Taie
,
C. H.
Chong
,
I.
Farrer
,
J. P.
Griffiths
,
D. A.
Ritchie
,
M. J.
Kelly
,
M.
Pepper
, and
C. G.
Smith
, “
Multiplexed charge-locking device for large arrays of quantum devices
,”
Appl. Phys. Lett.
107
,
143501
(
2015
).
20.
S. J.
Pauka
,
K.
Das
,
R.
Kalra
,
A.
Moini
,
Y.
Yang
,
M.
Trainer
,
A.
Bousquet
,
C.
Cantaloube
,
N.
Dick
,
G. C.
Gardner
,
M. J.
Manfra
, and
D. J.
Reilly
, “
A cryogenic interface for controlling many qubits
,” arXiv:1912.01299v1 (
2019
).
21.
J. M.
Elzerman
,
R.
Hanson
,
L. H.
Willems van Beveren
,
B.
Witkamp
,
L. M. K.
Vandersypen
, and
L. P.
Kouwenhoven
, “
Single-shot read-out of an individual electron spin in a quantum dot
,”
Nature
430
,
431
435
(
2004
).
22.
A.
Morello
,
J. J.
Pla
,
F. A.
Zwanenburg
,
K. W.
Chan
,
K. Y.
Tan
,
H.
Huebl
,
M.
Möttönen
,
C. D.
Nugroho
,
C.
Yang
,
J. A.
van Donkelaar
,
A. D. C.
Alves
,
D. N.
Jamieson
,
C. C.
Escott
,
L. C. L.
Hollenberg
,
R. G.
Clark
, and
A. S.
Dzurak
, “
Single-shot readout of an electron spin in silicon
,”
Nature
467
,
687
691
(
2010
).
23.
H.
Al-Taie
,
L. W.
Smith
,
B.
Xu
,
P.
See
,
J. P.
Griffiths
,
H. E.
Beere
,
G. A. C.
Jones
,
D. A.
Ritchie
,
M. J.
Kelly
, and
C. G.
Smith
, “
Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices
,”
Appl. Phys. Lett.
102
,
243102
(
2013
).
24.
D. R.
Ward
,
D. E.
Savage
,
M. G.
Lagally
,
S. N.
Coppersmith
, and
M. A.
Eriksson
, “
Integration of on-chip field-effect transistor switches with dopantless Si/SiGe quantum dots for high-throughput testing
,”
Appl. Phys. Lett.
102
,
213107
(
2013
).
25.
S.
Schaal
,
S.
Barraud
,
J. J. L.
Morton
, and
M. F.
Gonzalez-Zalba
, “
Conditional dispersive readout of a CMOS single-electron memory cell
,”
Phys. Rev. Appl.
9
,
054016
(
2018
).
26.
S.
Schaal
,
A.
Rossi
,
V. N.
Ciriano-Tejel
,
T.-Y.
Yang
,
S.
Barraud
,
J. J. L.
Morton
, and
M. F.
Gonzalez-Zalba
, “
A CMOS dynamic random access architecture for radio-frequency readout of quantum devices
,”
Nat. Electron.
2
,
236
242
(
2019
).
27.
B. J.
Sheu
and
C. C.
Hu
,
IEEE J. Solid-State Circuits
19
,
519
525
(
1984
).
28.
R. W.
Brodersen
,
P. R.
Gray
, and
D. A.
Hodges
, “
MOS switched-capacitor filters
,”
Proc. IEEE
67
,
61
75
(
1979
).
29.
B.
Razavi
,
Design of Analog CMOS Integrated Circuits
(
McGraw-Hill Education
,
2001
).
30.
D. A.
Johns
and
K.
Martin
,
Analog Integrated Circuit Design
(
John Wiley and Sons
,
1997
).
31.
D. A.
Neamen
,
Semiconductor Physics and Devices: Basic Principles
, 4th ed. (
McGraw-Hill
,
2012
).
32.
T. M.
Lu
,
J. K.
Gamble
,
R. P.
Muller
,
E.
Nielsen
,
D.
Bethke
,
G. A.
Ten Eyck
,
T.
Pluym
,
J. R.
Wendt
,
J.
Dominguez
,
M. P.
Lilly
,
M. S.
Carroll
, and
M. C.
Wanke
, “
Fabrication of quantum dots in undoped Si/Si0.8Ge0.2 heterostructures using a single metal-gate layer
,”
Appl. Phys. Lett.
109
,
093102
(
2016
).
33.
N.
Samkharadze
,
G.
Zheng
,
N.
Kalhor
,
D.
Brousse
,
A.
Sammak
,
U. C.
Mendes
,
A.
Blais
,
G.
Scappucci
, and
L. M. K.
Vandersypen
, “
Strong spin-photon coupling in silicon
,”
Science
359
,
1123
1127
(
2018
).
34.
B. M.
Freeman
,
J. S.
Schoenfield
, and
H.
Jiang
, “
Comparison of low frequency charge noise in identically patterned Si/SiO2 and Si/SiGe quantum dots
,”
Appl. Phys. Lett.
108
,
253108
(
2016
).

Supplementary Material

You do not currently have access to this content.